geomstats.numerics package#
Submodules#
geomstats.numerics.bvp module#
Boundary value problem solvers implementation.
geomstats.numerics.finite_differences module#
Finite differences machinery.
- geomstats.numerics.finite_differences.centered_difference(array, delta=None, axis=-1, endpoints=False)[source]#
Centered difference in a Euclidean space.
Points live in R^m, but are a k-dim embedding (e.g. a curve). Assumes points are in correspondence for cases higher than dim=1.
- Parameters:
array (array-like) – Values of a function.
delta (float) – Spacing between points.
axis (int) – Axis in which perform the difference. Must be given backwards.
endpoints (bool) – If True, endpoints are computed by backward and forward differences, respectively.
- Returns:
centered_diff (array-like) – Same shape as array.
- geomstats.numerics.finite_differences.forward_difference(array, delta=None, axis=-1)[source]#
Forward difference in a Euclidean space.
Points live in R^m, but are a k-dim embedding (e.g. a curve). Assumes points are in correspondence for cases higher than dim=1.
- Parameters:
array (array-like) – Values of a function.
delta (float) – Spacing between points.
axis (int) – Axis in which perform the difference. Must be given backwards.
- Returns:
forward_diff (array-like) – Shape in the specified axis reduces by one.
- geomstats.numerics.finite_differences.second_centered_difference(array, delta=None, axis=-1)[source]#
Second centered difference in a Euclidean space.
Points live in R^m, but are a k-dim embedding (e.g. a curve). Assumes points are in correspondence for cases higher than dim=1.
- Parameters:
array (array-like) – Values of a function.
delta (float) – Spacing between points.
axis (int) – Axis in which perform the difference. Must be given backwards.
- Returns:
second_centered_diff (array-like) – Shape in the specified axis reduces by two (endpoints).
geomstats.numerics.geodesic module#
Geodesic solvers implementation.
- class geomstats.numerics.geodesic.ExpODESolver(space, integrator=None)[source]#
Bases:
ExpSolver
Geodesic initial value problem solver.
Integrate geodesic equation.
- Parameters:
space (Manifold) – Equipped manifold.
integrator (ODEIVPIntegrator) – Instance of ODEIVP integrator.
- exp(tangent_vec, base_point)[source]#
Exponential map.
- Parameters:
tangent_vec (array-like, shape=[…, *space.shape]) – Tangent vector at the base point.
base_point (array-like, shape=[…, *space.shape]) – Point on the manifold.
- Returns:
end_point (array-like, shape=[…, *space.shape]) – Point on the manifold.
- geodesic_ivp(tangent_vec, base_point)[source]#
Geodesic curve for initial value problem.
- Parameters:
tangent_vec (array-like, shape=[…, *space.shape]) – Tangent vector at the base point.
base_point (array-like, shape=[…, *space.shape]) – Point on the manifold.
- Returns:
path (callable) – Time parametrized geodesic curve. f(t).
- property integrator#
An instance of ODEIVPIntegrator.
- class geomstats.numerics.geodesic.ExpSolver(solves_ivp=False)[source]#
Bases:
ABC
Abstract class for geodesic initial value problem solvers.
- Parameters:
solves_ivp (bool) – Informs if solver is able to solve for geodesic at different t.
- abstract exp(tangent_vec, base_point)[source]#
Exponential map.
- Parameters:
tangent_vec (array-like, shape=[…, dim]) – Tangent vector at the base point.
base_point (array-like, shape=[…, dim]) – Point on the manifold.
- Returns:
end_point (array-like, shape=[…, dim]) – Point on the manifold.
- geodesic_ivp(tangent_vec, base_point)[source]#
Geodesic curve for initial value problem.
- Parameters:
tangent_vec (array-like, shape=[…, dim]) – Tangent vector at the base point.
base_point (array-like, shape=[…, dim]) – Point on the manifold.
- Returns:
path (callable) – Time parametrized geodesic curve. f(t).
- class geomstats.numerics.geodesic.LogODESolver(space, n_nodes=10, integrator=None, initialization=None, use_jac=True)[source]#
Bases:
_LogBatchMixins
,LogSolver
Geodesic boundary value problem using an ODE solver.
- Parameters:
space (Manifold) – Equipped manifold.
n_nodes (Number of mesh nodes.)
integrator (ScipySolveBVP) – Instance of ScipySolveBVP.
initialization (callable) – Function to provide initial solution. f( point, base_point). Defaults to linear initialization.
- geodesic_bvp(point, base_point)[source]#
Geodesic curve for boundary value problem.
- Parameters:
end_point (array-like, shape=[…, dim]) – Point on the manifold.
base_point (array-like, shape=[…, dim]) – Point on the manifold.
- Returns:
path (callable) – Time parametrized geodesic curve. f(t). 0 <= t <= 1.
- class geomstats.numerics.geodesic.LogShootingSolver(space, optimizer=None, initialization=None, flatten=True)[source]#
Bases:
object
Geodesic boundary value problem solver using shooting.
- Parameters:
space (Manifold) – Equipped manifold.
optimizer (ScipyMinimize) – Instance of ScipyMinimize.
initialization (callable) – Function to provide initial solution. f(point, base_point). Defaults to linear initialization.
flatten (bool) – If True, the optimization problem is solved together for all the batch points.
- class geomstats.numerics.geodesic.LogSolver(solves_bvp=False)[source]#
Bases:
ABC
Abstract class for geodesic boundary value problem solvers.
- Parameters:
solves_bvp (bool) – Informs if solver is able to solve for geodesic at different t.
- class geomstats.numerics.geodesic.MultiresPathStraightening(space, path_energy=None, n_nodes=None, n_levels=3, optimizer=None, initialization=None, symmetric=False, early_stop=False)[source]#
Bases:
_DiscreteGeodesicBVPBatchMixins
,PathBasedLogSolver
Geodesic boundary value problem with multiresolution path straightening.
- Parameters:
space (Manifold) – Equipped manifold.
path_energy (callable) – Method to compute Riemannian path energy.
n_nodes (list) – Number of path discretization points at each resolution.
n_levels (int) – Number of resolutions to use. Sets number of nodes following a sequence. Ignored if
n_nodes
is not None.optimizer (ScipyMinimize) – An optimizer to solve path energy minimization problem.
initialization (callable) – A method to get initial guess for optimization.
symmetric (bool) – If to use a symmetrized version of the energy.
early_stop (bool) – If to stop at a resolution if previous resolution was solved with one iteration.
- class geomstats.numerics.geodesic.PathBasedLogSolver(space)[source]#
Bases:
LogSolver
,ABC
A geodesic BVP solver based on finding a discrete geodesic path.
- Parameters:
space (Manifold) – Equipped manifold.
- abstract discrete_geodesic_bvp(point, base_point)[source]#
Solve boundary value problem (BVP).
Given an initial point and an end point, solve the geodesic equation via minimizing the Riemannian path energy.
- Parameters:
point (array-like, shape=[…, *point_shape]) – Point on the manifold.
base_point (array-like, shape=[…, *point_shape]) – Point on the manifold.
- Returns:
discr_geod_path (array-like, shape=[…, n_nodes, *point_shape]) – Discrete geodesic.
- geodesic_bvp(point, base_point)[source]#
Geodesic curve for boundary value problem.
- Parameters:
end_point (array-like, shape=[…, *point_shape]) – Point on the manifold.
base_point (array-like, shape=[…, *point_shape]) – Point on the manifold.
- Returns:
path (callable) – Time parametrized geodesic curve. f(t).
- log(point, base_point)[source]#
Logarithm map.
- Parameters:
end_point (array-like, shape=[…, *point_shape]) – Point on the manifold.
base_point (array-like, shape=[…, *point_shape]) – Point on the manifold.
- Returns:
tangent_vec (array-like, shape=[…, *point_shape]) – Tangent vector at the base point.
- class geomstats.numerics.geodesic.PathStraightening(space, path_energy=None, n_nodes=100, optimizer=None, initialization=None, symmetric=False)[source]#
Bases:
_DiscreteGeodesicBVPBatchMixins
,PathBasedLogSolver
Geodesic boundary value problem with path-straightening.
- Parameters:
space (Manifold) – Equipped manifold.
path_energy (callable) – Method to compute Riemannian path energy.
n_nodes (int) – Number of path discretization points.
optimizer (ScipyMinimize) – An optimizer to solve path energy minimization problem.
initialization (callable) – A method to get initial guess for optimization.
symmetric (bool) – If to use a symmetrized version of the energy.
References
[HSKCB2022]“Elastic shape analysis of surfaces with second-order Sobolev metrics: a comprehensive numerical framework”. arXiv:2204.04238 [cs.CV], 25 Sep 2022
geomstats.numerics.interpolation module#
Interpolation machinery.
- class geomstats.numerics.interpolation.Interpolator[source]#
Bases:
ABC
Abstract class for interpolator.
- class geomstats.numerics.interpolation.LinearInterpolator1D(times, data, point_ndim=1)[source]#
Bases:
_LinearInterpolator1D
A 1D linear interpolator.
Assumes interpolation occurs in the unit interval.
- Parameters:
times (array-like, [n_times]) – Times. Must be sorted.
data (array-like, […, *point_shape])
point_ndim (int) – Dimension of point.
- class geomstats.numerics.interpolation.UniformUnitIntervalLinearInterpolator(data, point_ndim=1)[source]#
Bases:
_LinearInterpolator1D
A 1D linear interpolator.
Assumes interpolation occurs in the unit interval and data is uniformly sampled.
- Parameters:
data (array-like, […, *point_shape])
point_ndim (int) – Dimension of point.
geomstats.numerics.ivp module#
Initial value problem solvers implementation.
- class geomstats.numerics.ivp.GSIVPIntegrator(n_steps=10, step_type='euler', save_result=False)[source]#
Bases:
ODEIVPIntegrator
In-house ODE integrator.
- Parameters:
n_steps (int) – Number of steps to perform.
step_type (str) – Type of integration step. Possible values are euler, rk2, rk4.
save_result (bool) – If True, result is stored after calling integrate or integrate_t.
- integrate(force, initial_state, end_time=1.0)[source]#
Integrate force.
- Parameters:
force (callable) – Function to integrate: f(state, t).
initial_state (array-like, shape=[…, n_vars, *point_shape]) – Initial state.
end_time (float or None) – Integration end time.
- Returns:
result (OdeResult)
- property step_type#
Integrator step type.
- class geomstats.numerics.ivp.ODEIVPIntegrator(save_result=False, tchosen=False)[source]#
Bases:
ABC
Abstract class for ode ivp solvers.
- Parameters:
save_result (bool) – If True, result is stored after calling integrate or integrate_t.
tchosen (bool) – Informs about ability to solve at chosen times. If False, then does not implement integrate_t.
- abstract integrate(force, initial_state, end_time)[source]#
Integrate force.
- Parameters:
force (callable) – Function to integrate: f(state, t).
initial_state (array-like, shape=[…, n_vars, *point_shape]) – Initial state.
end_time (float or None) – Integration end time.
- Returns:
result (OdeResult)
- integrate_t(force, initial_state, t_eval)[source]#
Integrate force while choosing evaluating points.
- Parameters:
force (callable) – Function to integrate: f(state, t).
initial_state (array-like, shape=[…, n_vars, *point_shape]) – Initial state.
t_eval (array-like) – Times at which to store the computed solution.
- Returns:
result (OdeResult)
- class geomstats.numerics.ivp.OdeResult[source]#
Bases:
OptimizeResult
Bunch object (follows scipy).
Its purposes is to homogenize output of different integrators.
- class geomstats.numerics.ivp.ScipySolveIVP(method='RK45', save_result=False, point_ndim=1, **options)[source]#
Bases:
ODEIVPIntegrator
Wrapper for scipy.integrate.solve_ivp.
Check https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html for additional options.
- Parameters:
method (str) – Integration method.
save_result (bool) – If True, result is stored after calling integrate or integrate_t.
point_ndim = int – Dimension of array representing a point in the space.
- integrate(force, initial_state, end_time=1.0)[source]#
Integrate force.
- Parameters:
force (callable) – Function to integrate: f(state, t).
initial_state (array-like, shape=[…, n_vars, *point_shape]) – Initial state.
end_time (float or None) – Integration end time.
- Returns:
result (OdeResult)
- integrate_t(force, initial_state, t_eval)[source]#
Integrate force at t_eval points.
- Parameters:
force (callable) – Function to integrate: f(state, t).
initial_state (array-like, shape=[…, n_vars, *point_shape]) – Initial state.
t_eval (array-like) – Times at which to store the computed solution.
- Returns:
result (OdeResult)
geomstats.numerics.optimization module#
Optimizers implementations.
- class geomstats.numerics.optimization.NewtonMethod(atol=1e-12, max_iter=100, damped=False)[source]#
Bases:
RootFinder
Find a root of a vector-valued function with Newton’s method.
Check https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization for details.
- Parameters:
atol (float) – Tolerance to check algorithm convergence.
max_iter (int) – Maximum iterations.
damped (bool) – Whether to use a damped version. Check p358 of [N2018].
References
[N2018]Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018.
- class geomstats.numerics.optimization.RootFinder[source]#
Bases:
ABC
Find a root of a vector-valued function.
- class geomstats.numerics.optimization.ScipyMinimize(method='L-BFGS-B', autodiff_jac=False, autodiff_hess=False, bounds=None, constraints=(), tol=None, callback=None, options=None, save_result=False)[source]#
Bases:
object
Wrapper for scipy.optimize.minimize.
Only autodiff_jac and autodiff_hess differ from scipy: if True, then automatic differentiation is used to compute jacobian and/or hessian.
- class geomstats.numerics.optimization.ScipyRoot(method='hybr', autodiff_jac=False, tol=None, callback=None, options=None, save_result=False)[source]#
Bases:
RootFinder
Wrapper for scipy.optimize.root.
Only autodiff_jac differs from scipy: if True, then automatic differentiation is used to compute jacobian.
geomstats.numerics.path module#
Discrete-path related machinery.
- class geomstats.numerics.path.UniformlySampledDiscretePath(path, interpolator=None, **interpolator_kwargs)[source]#
Bases:
object
A uniformly-sampled discrete path.
- Parameters:
path (array-like, […, *point_shape])
interpolator (Interpolator1D)
- class geomstats.numerics.path.UniformlySampledPathEnergy(space)[source]#
Bases:
object
Riemannian path energy of a uniformly-sampled path.
- Parameters:
space (Manifold) – Equipped manifold.