Visualization¶
Visualization for Geometric Statistics.
-
class
geomstats.visualization.
Arrow3D
(point, vector)[source]¶ An arrow in 3d, i.e. a point and a vector.
-
class
geomstats.visualization.
Circle
(n_angles=100, points=None)[source]¶ Class used to draw a circle.
-
class
geomstats.visualization.
PoincareHalfPlane
(points=None, point_type='half-space')[source]¶ Class used to plot points in the Poincare Half Plane.
-
class
geomstats.visualization.
PoincarePolyDisk
(points=None, point_type='ball', n_disks=2)[source]¶ Class used to plot points in the Poincare polydisk.
-
class
geomstats.visualization.
SpecialEuclidean2
(points=None, point_type='matrix')[source]¶ Class used to plot points in the 2d special euclidean group.
-
class
geomstats.visualization.
Sphere
(n_meridians=40, n_circles_latitude=None, points=None)[source]¶ Create the arrays sphere_x, sphere_y, sphere_z to plot a sphere.
Create the arrays sphere_x, sphere_y, sphere_z of values to plot the wireframe of a sphere. Their shape is (n_meridians, n_circles_latitude).
-
class
geomstats.visualization.
Trihedron
(point, vec_1, vec_2, vec_3)[source]¶ A trihedron, i.e. 3 Arrow3Ds at the same point.
-
geomstats.visualization.
convert_to_trihedron
(point, space=None)[source]¶ Transform a rigid point into a trihedron.
Transform a rigid point into a trihedron s.t.: - the trihedron’s base point is the translation of the origin of R^3 by the translation part of point, - the trihedron’s orientation is the rotation of the canonical basis of R^3 by the rotation part of point.
-
geomstats.visualization.
plot
(points, ax=None, space=None, point_type=None, **point_draw_kwargs)[source]¶ Plot points in one of the implemented manifolds.
The implemented manifolds are: - the special orthogonal group SO(3) - the special Euclidean group SE(3) - the circle S1 and the sphere S2 - the hyperbolic plane (the Poincare disk, the Poincare
half plane and the Klein disk)
the Poincare polydisk
- Parameters
points (array-like, shape=[…, dim]) – Points to be plotted.
space (str, optional, {‘SO3_GROUP’, ‘SE3_GROUP’, ‘S1’, ‘S2’,) – ‘H2_poincare_disk’, ‘H2_poincare_half_plane’, ‘H2_klein_disk’, ‘poincare_polydisk’}
point_type (str, optional, {‘extrinsic’, ‘ball’, ‘half-space’})