Source code for geomstats.learning.radial_kernel_functions

"""Radial kernel functions.

Lead author: Yann Cabanes.

References
----------
.. [1] https://en.wikipedia.org/wiki/Kernel_(statistics)
.. [2] https://en.wikipedia.org/wiki/Radial_basis_function

Notes
-----
We chose not to apply the normalization coefficients used in some references
in order that the kernel functions integrate to 1 on the Euclidean space of
dimension 1.
"""

import geomstats.backend as gs


def _check_distance(distance):
    """Check if the distance if a non-negative real number."""
    if gs.any(distance < 0):
        raise ValueError("The distance should be a non-negative real number.")
    distance = gs.array(distance, dtype=float)
    return distance


def _check_bandwidth(bandwidth):
    """Check if the bandwidth is a positive real number."""
    if gs.any(bandwidth <= 0):
        raise ValueError("The bandwidth should be a positive real number.")
    bandwidth = gs.array(bandwidth, dtype=float)
    return bandwidth


[docs] def uniform_radial_kernel(distance, bandwidth=1.0): """Uniform radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, gs.ones(distance.shape, dtype=float), gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def triangular_radial_kernel(distance, bandwidth=1.0): """Triangular radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, 1 - scaled_distance, gs.zeros(distance.shape, dtype=float) ) return weight
[docs] def parabolic_radial_kernel(distance, bandwidth=1.0): """Parabolic radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, 1 - scaled_distance**2, gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def biweight_radial_kernel(distance, bandwidth=1.0): """Biweight radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, (1 - scaled_distance**2) ** 2, gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def triweight_radial_kernel(distance, bandwidth=1.0): """Triweight radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, (1 - scaled_distance**2) ** 3, gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def tricube_radial_kernel(distance, bandwidth=1.0): """Tricube radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, (1 - scaled_distance**3) ** 3, gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def gaussian_radial_kernel(distance, bandwidth=1.0): """Gaussian radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- .. [1] https://en.wikipedia.org/wiki/Kernel_(statistics) .. [2] https://en.wikipedia.org/wiki/Radial_basis_function """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.exp(-(scaled_distance**2) / 2) return weight
[docs] def cosine_radial_kernel(distance, bandwidth=1.0): """Cosine radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, gs.cos((gs.pi / 2) * scaled_distance), gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def logistic_radial_kernel(distance, bandwidth=1.0): """Logistic radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Kernel_(statistics) """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = 1 / (gs.exp(scaled_distance) + 2 + gs.exp(-scaled_distance)) return weight
[docs] def sigmoid_radial_kernel(distance, bandwidth=1.0): """Sigmoid radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = 1 / (gs.exp(scaled_distance) + gs.exp(-scaled_distance)) return weight
[docs] def bump_radial_kernel(distance, bandwidth=1.0): """Bump radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Radial_basis_function """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.where( scaled_distance < 1, gs.exp(-1 / (1 - scaled_distance**2)), gs.zeros(distance.shape, dtype=float), ) return weight
[docs] def inverse_quadratic_radial_kernel(distance, bandwidth=1.0): """Inverse quadratic radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Radial_basis_function """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = 1 / (1 + scaled_distance**2) return weight
[docs] def inverse_multiquadric_radial_kernel(distance, bandwidth=1.0): """Inverse multiquadric radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- https://en.wikipedia.org/wiki/Radial_basis_function """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = 1 / (1 + scaled_distance**2) ** (1 / 2) return weight
[docs] def laplacian_radial_kernel(distance, bandwidth=1.0): """Laplacian radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. References ---------- .. [1] http://crsouza.com/2010/03/17/ kernel-functions-for-machine-learning-applications/ .. [2] https://data-flair.training/blogs/svm-kernel-functions/ """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.exp(-scaled_distance) return weight