Source code for geomstats.learning.frechet_mean

"""Frechet mean.

Lead authors: Nicolas Guigui and Nina Miolane.
"""

import abc
import logging
import math

from sklearn.base import BaseEstimator

import geomstats.backend as gs
import geomstats.errors as error
from geomstats.geometry.discrete_curves import ElasticMetric, SRVMetric
from geomstats.geometry.euclidean import EuclideanMetric
from geomstats.geometry.hypersphere import HypersphereMetric

ELASTIC_METRICS = [SRVMetric, ElasticMetric]


def _is_linear_metric(metric):
    return isinstance(metric, EuclideanMetric)


def _is_elastic_metric(metric):
    return isinstance(metric, tuple(ELASTIC_METRICS))


def _scalarmul(scalar, array):
    return gs.einsum("n,n...->n...", scalar, array)


def _scalarmulsum(scalar, array):
    return gs.einsum("n,n...->...", scalar, array)


def _batchscalarmulsum(array_1, array_2):
    return gs.einsum("ni,ni...->i...", array_1, array_2)


[docs] def variance(space, points, base_point, weights=None): """Variance of (weighted) points wrt a base point. Parameters ---------- space : Manifold Equipped manifold. points : array-like, shape=[n_samples, dim] Points. weights : array-like, shape=[n_samples,] Weights associated to the points. Optional, default: None. Returns ------- var : float Weighted variance of the points. """ if weights is None: n_points = gs.shape(points)[0] weights = gs.ones((n_points,)) sum_weights = gs.sum(weights) sq_dists = space.metric.squared_dist(base_point, points) var = weights * sq_dists var = gs.sum(var) var /= sum_weights return var
[docs] def linear_mean(points, weights=None): """Compute the weighted linear mean. The linear mean is the Frechet mean when points: - lie in a Euclidean space with Euclidean metric, - lie in a Minkowski space with Minkowski metric. Parameters ---------- points : array-like, shape=[n_samples, dim] Points to be averaged. weights : array-like, shape=[n_samples,] Weights associated to the points. Optional, default: None. Returns ------- mean : array-like, shape=[dim,] Weighted linear mean of the points. """ if weights is None: n_points = gs.shape(points)[0] weights = gs.ones(n_points) sum_weights = gs.sum(weights) weighted_points = _scalarmul(weights, points) mean = gs.sum(weighted_points, axis=0) / sum_weights return mean
[docs] class BaseGradientDescent(abc.ABC): """Base class for gradient descent. Parameters ---------- max_iter : int, optional Maximum number of iterations for the gradient descent. epsilon : float, optional Tolerance for stopping the gradient descent. init_point : array-like, shape=[*metric.shape] Initial point. Optional, default : None. In this case the first sample of the input data is used. init_step_size : float Learning rate in the gradient descent. Optional, default: 1. verbose : bool Level of verbosity to inform about convergence. Optional, default: False. """ def __init__( self, max_iter=32, epsilon=1e-4, init_point=None, init_step_size=1.0, verbose=False, ): self.max_iter = max_iter self.epsilon = epsilon self.init_step_size = init_step_size self.verbose = verbose self.init_point = init_point
[docs] @abc.abstractmethod def minimize(self, space, points, weights=None): """Perform gradient descent.""" pass
[docs] class GradientDescent(BaseGradientDescent): """Default gradient descent."""
[docs] def minimize(self, space, points, weights=None): """Perform default gradient descent.""" n_points = gs.shape(points)[0] if weights is None: weights = gs.ones((n_points,)) mean = points[0] if self.init_point is None else self.init_point if n_points == 1: return mean sum_weights = gs.sum(weights) iteration = 0 sq_dist = 0.0 var = 0.0 norm_old = gs.linalg.norm(points) step_size = self.init_step_size while iteration < self.max_iter: logs = space.metric.log(point=points, base_point=mean) var = gs.sum(space.metric.squared_norm(logs, mean) * weights) / sum_weights tangent_mean = _scalarmulsum(weights, logs) tangent_mean /= sum_weights norm = gs.linalg.norm(tangent_mean) sq_dist = space.metric.squared_norm(tangent_mean, mean) var_is_0 = gs.isclose(var, 0.0) sq_dist_is_small = gs.less_equal(sq_dist, self.epsilon * space.dim) condition = ~gs.logical_or(var_is_0, sq_dist_is_small) if not (condition or iteration == 0): break estimate_next = space.metric.exp(step_size * tangent_mean, mean) mean = estimate_next iteration += 1 if norm < norm_old: norm_old = norm elif norm > norm_old: step_size = step_size / 2.0 if iteration == self.max_iter: logging.warning( "Maximum number of iterations %d reached. The mean may be inaccurate", self.max_iter, ) if self.verbose: logging.info( "n_iter: {}, final variance: {}, final dist: {}".format( iteration, var, sq_dist ) ) return mean
[docs] class BatchGradientDescent(BaseGradientDescent): """Batch gradient descent."""
[docs] def minimize(self, space, points, weights=None): """Perform batch gradient descent.""" shape = points.shape n_points, n_batch = shape[:2] point_shape = shape[2:] if n_points == 1: return points[0] if weights is None: weights = gs.ones((n_points, n_batch)) flat_shape = (n_batch * n_points,) + point_shape estimates = points[0] if self.init_point is None else self.init_point points_flattened = gs.reshape(points, (n_points * n_batch,) + point_shape) convergence = math.inf iteration = 0 convergence_old = convergence step_size = self.init_step_size while convergence > self.epsilon and self.max_iter > iteration: iteration += 1 estimates_broadcast, _ = gs.broadcast_arrays(estimates, points) estimates_flattened = gs.reshape(estimates_broadcast, flat_shape) tangent_grad = space.metric.log(points_flattened, estimates_flattened) tangent_grad = gs.reshape(tangent_grad, shape) tangent_mean = _batchscalarmulsum(weights, tangent_grad) / n_points next_estimates = space.metric.exp(step_size * tangent_mean, estimates) convergence = gs.sum(space.metric.squared_norm(tangent_mean, estimates)) estimates = next_estimates if convergence < convergence_old: convergence_old = convergence elif convergence > convergence_old: step_size = step_size / 2.0 if iteration == self.max_iter: logging.warning( "Maximum number of iterations %d reached. The mean may be inaccurate", self.max_iter, ) if self.verbose: logging.info( "n_iter: %d, final dist: %e, final step size: %e", iteration, convergence, step_size, ) return estimates
[docs] class AdaptiveGradientDescent(BaseGradientDescent): """Adaptive gradient descent."""
[docs] def minimize(self, space, points, weights=None): """Perform adaptive gradient descent. Frechet mean of (weighted) points using adaptive time-steps The loss function optimized is :math:`||M_1(x)||_x` (where :math:`M_1(x)` is the tangent mean at x) rather than the mean-square-distance (MSD) because this simplifies computations. Adaptivity is done in a Levenberg-Marquardt style weighting variable tau between the first order and the second order Gauss-Newton gradient descent. Parameters ---------- points : array-like, shape=[n_samples, *metric.shape] Points to be averaged. weights : array-like, shape=[n_samples,], optional Weights associated to the points. Returns ------- current_mean: array-like, shape=[*metric.shape] Weighted Frechet mean of the points. """ n_points = gs.shape(points)[0] tau_max = 1e6 tau_mul_up = 1.6511111 tau_min = 1e-6 tau_mul_down = 0.1 if n_points == 1: return points[0] current_mean = points[0] if self.init_point is None else self.init_point if weights is None: weights = gs.ones((n_points,)) sum_weights = gs.sum(weights) tau = self.init_step_size iteration = 0 logs = space.metric.log(point=points, base_point=current_mean) var = ( gs.sum(space.metric.squared_norm(logs, current_mean) * weights) / sum_weights ) current_tangent_mean = _scalarmulsum(weights, logs) current_tangent_mean /= sum_weights sq_norm_current_tangent_mean = space.metric.squared_norm( current_tangent_mean, base_point=current_mean ) while ( sq_norm_current_tangent_mean > self.epsilon**2 and iteration < self.max_iter ): iteration += 1 shooting_vector = tau * current_tangent_mean next_mean = space.metric.exp( tangent_vec=shooting_vector, base_point=current_mean ) logs = space.metric.log(point=points, base_point=next_mean) var = ( gs.sum(space.metric.squared_norm(logs, current_mean) * weights) / sum_weights ) next_tangent_mean = _scalarmulsum(weights, logs) next_tangent_mean /= sum_weights sq_norm_next_tangent_mean = space.metric.squared_norm( next_tangent_mean, base_point=next_mean ) if sq_norm_next_tangent_mean < sq_norm_current_tangent_mean: current_mean = next_mean current_tangent_mean = next_tangent_mean sq_norm_current_tangent_mean = sq_norm_next_tangent_mean tau = min(tau_max, tau_mul_up * tau) else: tau = max(tau_min, tau_mul_down * tau) if iteration == self.max_iter: logging.warning( "Maximum number of iterations %d reached. The mean may be inaccurate", self.max_iter, ) if self.verbose: logging.info( "n_iter: %d, final variance: %e, final dist: %e, final_step_size: %e", iteration, var, sq_norm_current_tangent_mean, tau, ) return current_mean
[docs] class LinearMean(BaseEstimator): """Linear mean. Parameters ---------- space : Manifold Equipped manifold. Attributes ---------- estimate_ : array-like, shape=[*space.shape] If fit, Frechet mean. """ def __init__(self, space): self.space = space self.estimate_ = None
[docs] def fit(self, X, y=None, weights=None): """Compute the Euclidean mean. Parameters ---------- X : array-like, shape=[n_samples, *metric.shape] Training input samples. y : None Target values. Ignored. weights : array-like, shape=[n_samples,] Weights associated to the samples. Optional, default: None, in which case it is equally weighted. Returns ------- self : object Returns self. """ self.estimate_ = linear_mean(points=X, weights=weights) return self
[docs] class ElasticMean(BaseEstimator): """Elastic mean. Parameters ---------- space : Manifold Equipped manifold. Attributes ---------- estimate_ : array-like, shape=[*space.shape] If fit, Frechet mean. """ def __init__(self, space): self.space = space self.estimate_ = None def _elastic_mean(self, points, weights=None): """Compute the weighted mean of elastic curves. SRV: Square Root Velocity. SRV curves are a special case of Elastic curves. The computation of the mean goes as follows: - Transform the curves into their SRVs/F-transform representations, - Compute the linear mean of the SRVs/F-transform representations, - Inverse-transform the mean in curve space. Parameters ---------- points : array-like, shape=[n_samples, k_sampling_points, dim] Points on the manifold of curves (i.e. curves) to be averaged. weights : array-like, shape=[n_samples,] Weights associated to the points (i.e. curves). Optional, default: None. Returns ------- mean : array-like, shape=[k_sampling_points, dim] Weighted linear mean of the points (i.e. of the curves). """ diffeo = self.space.metric.diffeo transformed = diffeo(points) transformed_linear_mean = linear_mean(transformed, weights=weights) return diffeo.inverse(transformed_linear_mean)
[docs] def fit(self, X, y=None, weights=None): """Compute the elastic mean. Parameters ---------- X : array-like, shape=[n_samples, *metric.shape] Training input samples. y : None Target values. Ignored. weights : array-like, shape=[n_samples,] Weights associated to the samples. Optional, default: None, in which case it is equally weighted. Returns ------- self : object Returns self. """ self.estimate_ = self._elastic_mean(X, weights=weights) return self
[docs] class CircleMean(BaseEstimator): """Circle mean. Parameters ---------- space : Manifold Equipped manifold. Attributes ---------- estimate_ : array-like, shape=[2,] If fit, Frechet mean. """ def __init__(self, space): self.space = space self.estimate_ = None def _circle_mean(self, points): """Determine the mean on a circle. Data are expected in radians in the range [-pi, pi). The mean is returned in the same range. If the mean is unique, this algorithm is guaranteed to find it. It is not vulnerable to local minima of the Frechet function. If the mean is not unique, the algorithm only returns one of the means. Which mean is returned depends on numerical rounding errors. Parameters ---------- points : array-like, shape=[n_samples, 1] Data set of angles (intrinsic coordinates). Reference --------- .. [HH15] Hotz, T. and S. F. Huckemann (2015), "Intrinsic means on the circle: Uniqueness, locus and asymptotics", Annals of the Institute of Statistical Mathematics 67 (1), 177–193. https://arxiv.org/abs/1108.2141 """ sample_size = points.shape[0] mean0 = gs.mean(points) var0 = gs.sum((points - mean0) ** 2) sorted_points = gs.sort(points, axis=0) means = self._circle_variances(mean0, var0, sample_size, sorted_points) return means[gs.argmin(means[:, 1]), 0] @staticmethod def _circle_variances(mean, var, n_samples, points): """Compute the minimizer of the variance functional. Parameters ---------- mean : float Mean angle. var : float Variance of the angles. n_samples : int Number of samples. points : array-like, shape=[n_samples,] Data set of ordered angles. References ---------- .. [HH15] Hotz, T. and S. F. Huckemann (2015), "Intrinsic means on the circle: Uniqueness, locus and asymptotics", Annals of the Institute of Statistical Mathematics 67 (1), 177–193. https://arxiv.org/abs/1108.2141 """ means = (mean + gs.linspace(0.0, 2 * gs.pi, n_samples + 1)[:-1]) % (2 * gs.pi) means = gs.where(means >= gs.pi, means - 2 * gs.pi, means) parts = gs.array([gs.sum(points) / n_samples if means[0] < 0 else 0]) m_plus = means >= 0 left_sums = gs.cumsum(points) right_sums = left_sums[-1] - left_sums i = gs.arange(n_samples, dtype=right_sums.dtype) j = i[1:] parts2 = right_sums[:-1] / (n_samples - j) first_term = parts2[:1] parts2 = gs.where(m_plus[1:], left_sums[:-1] / j, parts2) parts = gs.concatenate([parts, first_term, parts2[1:]]) # Formula (6) from [HH15]_ plus_vec = (4 * gs.pi * i / n_samples) * (gs.pi + parts - mean) - ( 2 * gs.pi * i / n_samples ) ** 2 minus_vec = (4 * gs.pi * (n_samples - i) / n_samples) * ( gs.pi - parts + mean ) - (2 * gs.pi * (n_samples - i) / n_samples) ** 2 minus_vec = gs.where(m_plus, plus_vec, minus_vec) means = gs.transpose(gs.vstack([means, var + minus_vec])) return means
[docs] def fit(self, X, y=None): """Compute the circle mean. Parameters ---------- X : array-like, shape=[n_samples, 2] Training input samples. y : None Target values. Ignored. weights : array-like, shape=[n_samples,] Weights associated to the samples. Optional, default: None, in which case it is equally weighted. Returns ------- self : object Returns self. """ self.estimate_ = self.space.angle_to_extrinsic( self._circle_mean(self.space.extrinsic_to_angle(X)) ) return self
[docs] class FrechetMean(BaseEstimator): r"""Empirical Frechet mean. Parameters ---------- space : Manifold Equipped manifold. method : str, {\'default\', \'adaptive\', \'batch\'} Gradient descent method. The `adaptive` method uses a Levenberg-Marquardt style adaptation of the learning rate. The `batch` method is similar to the default method but for batches of equal length of samples. In this case, samples must be of shape [n_samples, n_batch, *space.shape]. Optional, default: \'default\'. Attributes ---------- estimate_ : array-like, shape=[*space.shape] If fit, Frechet mean. Notes ----- * Required metric methods for general case: * `log`, `exp`, `squared_norm` (for convergence criteria) """ def __new__(cls, space, **kwargs): """Interface for instantiating proper algorithm.""" if isinstance(space.metric, HypersphereMetric) and space.dim == 1: return CircleMean(space, **kwargs) elif _is_linear_metric(space.metric): return LinearMean(space, **kwargs) elif _is_elastic_metric(space.metric): return ElasticMean(space, **kwargs) return super().__new__(cls) def __init__(self, space, method="default"): self.space = space self._method = None self.method = method self.estimate_ = None
[docs] def set(self, **kwargs): """Set optimizer parameters. Especially useful for one line instantiations. """ for param_name, value in kwargs.items(): if not hasattr(self.optimizer, param_name): raise ValueError(f"Unknown parameter {param_name}.") setattr(self.optimizer, param_name, value) return self
@property def method(self): """Gradient descent method.""" return self._method @method.setter def method(self, value): """Gradient descent method.""" error.check_parameter_accepted_values( value, "method", ["default", "adaptive", "batch"] ) if value == self._method: return self._method = value MAP_OPTIMIZER = { "default": GradientDescent, "adaptive": AdaptiveGradientDescent, "batch": BatchGradientDescent, } self.optimizer = MAP_OPTIMIZER[value]()
[docs] def fit(self, X, y=None, weights=None): """Compute the empirical weighted Frechet mean. Parameters ---------- X : array-like, shape=[n_samples, *metric.shape] Training input samples. y : None Target values. Ignored. weights : array-like, shape=[n_samples,] Weights associated to the samples. Optional, default: None, in which case it is equally weighted. Returns ------- self : object Returns self. """ self.estimate_ = self.optimizer.minimize( space=self.space, points=X, weights=weights, ) return self