Source code for geomstats.geometry.symmetric_matrices

"""The vector space of symmetric matrices.

Lead author: Yann Thanwerdas.
"""

import geomstats.backend as gs
from geomstats.geometry.base import (
    DiffeomorphicMatrixVectorSpace,
    LevelSet,
    MatrixVectorSpace,
)
from geomstats.geometry.diffeo import Diffeo
from geomstats.geometry.euclidean import EuclideanMetric
from geomstats.geometry.matrices import Matrices, MatricesMetric
from geomstats.vectorization import repeat_out, repeat_out_multiple_ndim


[docs] class SymmetricMatrices(MatrixVectorSpace): """Class for the vector space of symmetric matrices of size n. Parameters ---------- n : int Integer representing the shapes of the matrices: n x n. """ def __init__(self, n, equip=True): self.n = n super().__init__(dim=int(n * (n + 1) / 2), shape=(n, n), equip=equip)
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return MatricesMetric
def _create_basis(self): """Compute the basis of the vector space of symmetric matrices.""" indices, values = [], [] k = -1 for row in range(self.n): for col in range(row, self.n): k += 1 if row == col: indices.append((k, row, row)) values.append(1.0) else: indices.extend([(k, row, col), (k, col, row)]) values.extend([1.0, 1.0]) return gs.array_from_sparse(indices, values, (k + 1, self.n, self.n))
[docs] def belongs(self, point, atol=gs.atol): """Evaluate if a matrix is symmetric. Parameters ---------- point : array-like, shape=[.., n, n] Point to test. atol : float Tolerance to evaluate equality with the transpose. Returns ------- belongs : array-like, shape=[...,] Boolean evaluating if point belongs to the space. """ belongs = super().belongs(point) if gs.any(belongs): is_symmetric = Matrices.is_symmetric(point, atol) return gs.logical_and(belongs, is_symmetric) return belongs
[docs] def projection(self, point): """Make a matrix symmetric, by averaging with its transpose. Parameters ---------- point : array-like, shape=[..., n, n] Matrix. Returns ------- sym : array-like, shape=[..., n, n] Symmetric matrix. """ return Matrices.to_symmetric(point)
[docs] @staticmethod def basis_representation(matrix_representation): """Convert a symmetric matrix into a vector. Parameters ---------- matrix_representation : array-like, shape=[..., n, n] Matrix. Returns ------- basis_representation : array-like, shape=[..., n(n+1)/2] Vector. """ return gs.triu_to_vec(matrix_representation)
[docs] @staticmethod def matrix_representation(basis_representation): """Convert a vector into a symmetric matrix. Parameters ---------- basis_representation : array-like, shape=[..., n(n+1)/2] Vector. Returns ------- matrix_representation : array-like, shape=[..., n, n] Symmetric matrix. """ vec_dim = basis_representation.shape[-1] mat_dim = (gs.sqrt(8.0 * vec_dim + 1) - 1) / 2 if mat_dim != int(mat_dim): raise ValueError( "Invalid input dimension, it must be of the form " "(n_samples, n * (n + 1) / 2)" ) mat_dim = int(mat_dim) shape = (mat_dim, mat_dim) mask = 2 * gs.ones(shape) - gs.eye(mat_dim) indices = list(zip(*gs.triu_indices(mat_dim))) if gs.ndim(basis_representation) == 1: upper_triangular = gs.array_from_sparse( indices, basis_representation, shape ) else: upper_triangular = gs.stack( [ gs.array_from_sparse(indices, data, shape) for data in basis_representation ] ) mat = Matrices.to_symmetric(upper_triangular) * mask return mat
[docs] class SymmetricHollowMatrices(LevelSet, MatrixVectorSpace): r"""Space of symmetric hollow matrices. Set of symmetric matrices with null diagonal: .. math:: \operatorname{Hol}(n) = \{X \in \operatorname{Sym}(n) \mid \operatorname{Diag}(X)=0\} Parameters ---------- n : int Integer representing the shapes of the matrices: n x n. References ---------- .. [T2022] Yann Thanwerdas. Riemannian and stratified geometries on covariance and correlation matrices. Differential Geometry [math.DG]. Université Côte d'Azur, 2022. """ def __init__(self, n, equip=True): self.n = n super().__init__(dim=int(n * (n - 1) / 2), shape=(n, n), equip=equip)
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return MatricesMetric
def _define_embedding_space(self): return SymmetricMatrices(n=self.n)
[docs] def submersion(self, point): """Submersion that defines the manifold. Parameters ---------- point : array-like, shape=[..., n, n] Returns ------- submersed_point : array-like, shape=[..., n] """ return Matrices.diagonal(point)
[docs] def tangent_submersion(self, vector, point): """Tangent submersion. Parameters ---------- vector : array-like, shape=[..., n, n] point : Ignored. Returns ------- submersed_vector : array-like, shape=[..., n] """ out = self.submersion(vector) return repeat_out(self.point_ndim, out, vector, point, out_shape=(self.n,))
def _create_basis(self): """Compute the basis of the vector space of hollow symmetric matrices.""" indices, values = [], [] k = -1 for row in range(self.n): for col in range(row + 1, self.n): k += 1 indices.extend([(k, row, col), (k, col, row)]) values.extend([1.0, 1.0]) return gs.array_from_sparse(indices, values, (k + 1, self.n, self.n))
[docs] @staticmethod def basis_representation(matrix_representation): """Convert a hollow symmetric matrix into a vector. Parameters ---------- matrix_representation : array-like, shape=[..., n, n] Matrix. Returns ------- vec : array-like, shape=[..., n(n+1)/2] Vector. """ return gs.triu_to_vec(matrix_representation, k=1)
[docs] def projection(self, point): """Project a point in embedding manifold on embedded manifold. Parameters ---------- point : array-like, shape=[..., *embedding_space.point_shape] Point in embedding manifold. Returns ------- projected : array-like, shape=[..., *point_shape] Projected point. """ return point - Matrices.to_diagonal(point)
[docs] class HollowMatricesPermutationInvariantMetric(EuclideanMetric): r"""A permutation-invariant metric on the space of hollow matrices. It is flat Riemannian metric invariant by the congruence action of permutation matrices defined over a matrix vector space. Its associated quadratic form is: .. math:: q(X)=\alpha \operatorname{tr}\left(X^2\right) +\beta \operatorname{Sum}\left(X^2\right) +\gamma \operatorname{Sum}(X)^2 Parameters ---------- space : Manifold alpha : float Scalar multiplying first term of quadratic form. beta : float Scalar multiplying second term of quadratic form. gamma : float Scalar multiplying third term of quadratic form. Check out chapter 8 of [T2022]_ for more details. References ---------- .. [T2022] Yann Thanwerdas. Riemannian and stratified geometries on covariance and correlation matrices. Differential Geometry [math.DG]. Université Côte d'Azur, 2022. """ def __init__(self, space, alpha=None, beta=None, gamma=1.0): if alpha is None: alpha = 1.0 if space.n > 3 else 0.0 if beta is None: beta = 1.0 if space.n > 2 else 0.0 self._check_params(space, alpha, beta, gamma) super().__init__(space=space) self.alpha = alpha self.beta = beta self.gamma = gamma @staticmethod def _check_params(space, alpha, beta, gamma): r"""Check parameters of quadratic form. The following conditions must verify: - n > 3: :math:`\alpha>0,2 \alpha+(n-2) \beta>0, \alpha+(n-1)(\beta+n \gamma)>0` - n = 3: :math:`\alpha=0, \beta > 0, \beta+3 \gamma>0` - n = 2: :math:`\alpha=0, \beta=0, \gamma > 0` """ n = space.n if n == 2: if alpha > gs.atol or beta > gs.atol or gamma < gs.atol: raise ValueError( f"When n==2: alpha ({alpha}) and beta ({beta}) must be 0, " f"and gamma ({gamma}) > 0. " "Check thanwerdas2022 theorem 8.7" ) return elif n == 3: cond = beta + 3 * gamma if alpha > gs.atol or beta < gs.atol or cond < gs.atol: raise ValueError( f"When n==3: alpha ({alpha}) must be 0, beta ({beta}) > 0 " f"and an inequality greater than 0: {cond}. " "Check thanwerdas2022 theorem 8.7" ) return cond_1 = 2 * alpha + (n - 2) * beta cond_2 = alpha + (n - 1) * (beta + n * gamma) if cond_1 < gs.atol or cond_2 < gs.atol: raise ValueError( f"Inequalities should be greater than 0, but: {cond_1} and {cond_2}. " "Check thanwerdas2022 theorem 8.7" ) def _quadratic_form(self, tangent_vec): """Quadratic form associated to inner product. Parameters ---------- tangent_vec: array-like, shape=[..., n, n] Tangent vector at base point. """ comp = gs.matmul(tangent_vec, tangent_vec) out_alpha = self.alpha * gs.trace(comp) if self.alpha > gs.atol else 0.0 out_beta = ( self.beta * gs.sum(comp, axis=(-2, -1)) if self.beta > gs.atol else 0.0 ) out_gamma = self.gamma * gs.sum(tangent_vec, axis=(-2, -1)) ** 2 return out_alpha + out_beta + out_gamma
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None): """Inner product between two tangent vectors at a base point. Parameters ---------- tangent_vec_a: array-like, shape=[..., n, n] Tangent vector at base point. tangent_vec_b: array-like, shape=[..., n, n] Tangent vector at base point. base_point: array-like, shape=[..., n, n] Base point. Optional, default: None. Returns ------- inner_product : array-like, shape=[...,] Inner-product. """ inner_prod = (1 / 2) * ( self._quadratic_form(tangent_vec_a + tangent_vec_b) - self._quadratic_form(tangent_vec_a) - self._quadratic_form(tangent_vec_b) ) return repeat_out( self._space.point_ndim, inner_prod, tangent_vec_a, tangent_vec_b, base_point )
[docs] def squared_norm(self, vector, base_point=None): """Compute the square of the norm of a vector. Squared norm of a vector associated to the inner product at the tangent space at a base point. Parameters ---------- vector : array-like, shape=[..., n, n] Vector. base_point : array-like, shape=[..., n, n] Base point. Optional, default: None. Returns ------- sq_norm : array-like, shape=[...,] Squared norm. """ return self._quadratic_form(vector)
[docs] class ConstantValueRowSumsDiffeo(Diffeo): r"""A diffeomorphism from the constant-value-row-sum matrices to symmetric matrices. A particular case is the diffeomorphism between the space of null-row-sum symmetric n-matrices and the space of symmetric (n-1)-matrices. Let :math:`f` be the diffeomorphism :math:`f: M \rightarrow N` of the manifold :math:`M` into the manifold :math:`N`. """ def __init__(self, value=0.0): self.value = value self._space_ndim = 2 self._image_space_ndim = 2 def __call__(self, base_point): """Diffeomorphism at base point. Parameters ---------- base_point : array-like, shape=[..., n, n] Base point. Returns ------- image_point : array-like, shape=[..., n-1, n-1] Image point. """ return base_point[..., :-1, :-1] def _concatenate_row_sums(self, image_point, value): """Concatenate missing row and column.""" row_sums = value - gs.sum(image_point, axis=-1) last_row = gs.concatenate( [row_sums, gs.expand_dims(value - gs.sum(row_sums, axis=-1), axis=-1)], axis=-1, ) return gs.concatenate( [ gs.concatenate( [image_point, gs.expand_dims(row_sums, axis=-1)], axis=-1 ), gs.expand_dims(last_row, axis=-2), ], axis=-2, )
[docs] def inverse(self, image_point): r"""Inverse diffeomorphism at image point. :math:`f^{-1}: N \rightarrow M` Parameters ---------- image_point : array-like, shape=[..., n-1, n-1] Image point. Returns ------- base_point : array-like, shape=[..., n, n] Base point. """ return self._concatenate_row_sums(image_point, self.value)
[docs] def tangent(self, tangent_vec, base_point=None, image_point=None): r"""Tangent diffeomorphism at base point. df_p is a linear map from T_pM to T_f(p)N. Parameters ---------- tangent_vec : array-like, shape=[..., *space_shape] Tangent vector at base point. base_point : array-like, shape=[..., *space_shape] Base point. image_point : array-like, shape=[..., *image_shape] Image point. Returns ------- image_tangent_vec : array-like, shape=[..., *image_shape] Image tangent vector at image of the base point. """ out = self(tangent_vec) return repeat_out_multiple_ndim( out, self._space_ndim, (tangent_vec, base_point), self._image_space_ndim, (image_point,), out_ndim=self._image_space_ndim, )
[docs] def inverse_tangent(self, image_tangent_vec, image_point=None, base_point=None): r"""Inverse tangent diffeomorphism at image point. df^-1_p is a linear map from T_f(p)N to T_pM Parameters ---------- image_tangent_vec : array-like, shape=[..., *image_shape] Image tangent vector at image point. image_point : array-like, shape=[..., *image_shape] Image point. base_point : array-like, shape=[..., *space_shape] Base point. Returns ------- tangent_vec : array-like, shape=[..., *space_shape] Tangent vector at base point. """ out = self._concatenate_row_sums(image_tangent_vec, 0.0) return repeat_out_multiple_ndim( out, self._image_space_ndim, (image_tangent_vec, image_point), self._space_ndim, (base_point,), out_ndim=self._space_ndim, )
[docs] class NullRowSumsSymmetricMatrices(LevelSet, DiffeomorphicMatrixVectorSpace): r"""Space of null-row-sums symmetric matrices. Set of symmetric matrices with null row sums: .. math:: \operatorname{Row_0}(n) = \{S \in \operatorname{Sym}(n) \mid S \mathbb{1}=0 \} Check out chapter 8 of [T2022]_ and [T2023]_ for more details. Parameters ---------- n : int Integer representing the shapes of the matrices: n x n. References ---------- .. [T2022] Yann Thanwerdas. Riemannian and stratified geometries on covariance and correlation matrices. Differential Geometry [math.DG]. Université Côte d'Azur, 2022. .. [T2023] Thanwerdas, Yann. “Permutation-Invariant Log-Euclidean Geometries on Full-Rank Correlation Matrices,” November 2023. https://hal.science/hal-03878729. """ def __init__(self, n, equip=True): self.n = n image_space = SymmetricMatrices(n - 1, equip=False) super().__init__( dim=image_space.dim, diffeo=ConstantValueRowSumsDiffeo(value=0.0), image_space=image_space, shape=(n, n), equip=equip, )
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return MatricesMetric
def _define_embedding_space(self): """Define embedding space of the manifold. Returns ------- embedding_space : Manifold Instance of Manifold. """ return SymmetricMatrices(n=self.n)
[docs] def submersion(self, point): """Submersion that defines the manifold. Parameters ---------- point : array-like, shape=[..., n, n] Returns ------- submersed_point : array-like, shape=[..., n] """ return gs.sum(point, axis=-1)
[docs] def tangent_submersion(self, vector, point): """Tangent submersion. Parameters ---------- vector : array-like, shape=[..., n, n] point : Ignored. Returns ------- submersed_vector : array-like, shape=[..., n] """ out = self.submersion(vector) return repeat_out(self.point_ndim, out, vector, point, out_shape=(self.n,))
def _create_basis(self): """Compute the basis of the vector space.""" indices, values = [], [] k = -1 for row in range(self.n - 1): for col in range(row, self.n - 1): k += 1 if row == col: indices.append((k, row, row)) values.append(1.0) else: indices.extend([(k, row, col), (k, col, row)]) values.extend([1.0, 1.0]) pre_basis = gs.array_from_sparse(indices, values, (k + 1, self.n, self.n)) return self.matrix_representation( self.basis_representation( pre_basis, ) )
[docs] class NullRowSumsPermutationInvariantMetric(EuclideanMetric): r"""A permutation-invariant metric on the space of null-row-sums symmetric matrices. It is flat Riemannian metric invariant by the congruence action of permutation matrices defined over a matrix vector space. Its associated quadratic form is: .. math:: q(Y)=\alpha \operatorname{tr}\left(Y^2\right) +\delta \operatorname{tr}\left(\operatorname{Diag}(Y)^2\right) +\zeta \operatorname{tr}(Y)^2 Check out chapter 8 of [T2022]_ and [T2023]_ for more details. Parameters ---------- space : Manifold alpha : float Scalar multiplying first term of quadratic form. delta : float Scalar multiplying second term of quadratic form. zeta : float Scalar multiplying third term of quadratic form. References ---------- .. [T2022] Yann Thanwerdas. Riemannian and stratified geometries on covariance and correlation matrices. Differential Geometry [math.DG]. Université Côte d'Azur, 2022. .. [T2023] Thanwerdas, Yann. “Permutation-Invariant Log-Euclidean Geometries on Full-Rank Correlation Matrices,” November 2023. https://hal.science/hal-03878729. """ def __init__(self, space, alpha=None, delta=None, zeta=1.0): if alpha is None: alpha = 1.0 if space.n > 3 else 0.0 if delta is None: delta = 1.0 if space.n > 2 else 0.0 self._check_params(space, alpha, delta, zeta) super().__init__(space=space) self.alpha = alpha self.delta = delta self.zeta = zeta @staticmethod def _check_params(space, alpha, delta, zeta): r"""Check parameters of quadratic form. The following conditions must verify: - n > 3: :math:`\alpha>0, n\alpha+(n-2)\delta>0, n\alpha+(n-1)(\delta+n\zeta)>0` - n = 3: :math:`\alpha=0, \delta > 0, \delta + 3 \zeta > 0` - n = 2: :math:`\alpha=\delta=0, \zeta > 0` """ n = space.n if n == 2: if alpha > gs.atol or delta > gs.atol or zeta < gs.atol: raise ValueError( f"When n==2: alpha ({alpha}) and delta ({delta}) must be 0, " f"and zeta ({zeta}) > 0. " "Check thanwerdas2022 theorem 8.7" ) return elif n == 3: cond = delta + 3 * zeta if alpha > gs.atol or delta < gs.atol or cond < gs.atol: raise ValueError( f"When n==3: alpha ({alpha}) must be 0, delta ({delta}) > 0 " f"and an inequality greater than 0: {cond}. " "Check thanwerdas2022 theorem 8.7" ) return cond_1 = n * alpha + (n - 2) * delta cond_2 = n * alpha + (n - 1) * (delta + n * zeta) if cond_1 < gs.atol or cond_2 < gs.atol: raise ValueError( f"Inequalities should be greater than 0, but: {cond_1} and {cond_2}. " "Check thanwerdas2022 theorem 8.7" ) def _quadratic_form(self, tangent_vec): """Quadratic form associated to inner product. Parameters ---------- tangent_vec: array-like, shape=[..., n, n] Tangent vector at base point. """ if self.alpha > gs.atol: comp = gs.matmul(tangent_vec, tangent_vec) out_alpha = self.alpha * gs.trace(comp) else: out_alpha = 0.0 out_delta = ( self.delta * gs.sum(Matrices.diagonal(tangent_vec) ** 2, axis=-1) if self.delta > gs.atol else 0.0 ) out_zeta = self.zeta * gs.trace(tangent_vec) ** 2 return out_alpha + out_delta + out_zeta
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None): """Inner product between two tangent vectors at a base point. Parameters ---------- tangent_vec_a: array-like, shape=[..., n, n] Tangent vector at base point. tangent_vec_b: array-like, shape=[..., n, n] Tangent vector at base point. base_point: array-like, shape=[..., n, n] Base point. Optional, default: None. Returns ------- inner_product : array-like, shape=[...,] Inner-product. """ inner_prod = (1 / 2) * ( self._quadratic_form(tangent_vec_a + tangent_vec_b) - self._quadratic_form(tangent_vec_a) - self._quadratic_form(tangent_vec_b) ) return repeat_out( self._space.point_ndim, inner_prod, tangent_vec_a, tangent_vec_b, base_point )
[docs] def squared_norm(self, vector, base_point=None): """Compute the square of the norm of a vector. Squared norm of a vector associated to the inner product at the tangent space at a base point. Parameters ---------- vector : array-like, shape=[..., n, n] Vector. base_point : array-like, shape=[..., n, n] Base point. Optional, default: None. Returns ------- sq_norm : array-like, shape=[...,] Squared norm. """ return self._quadratic_form(vector)