Source code for geomstats.geometry.spd_matrices

"""The manifold of symmetric positive definite (SPD) matrices.

Lead authors: Yann Thanwerdas and Olivier Bisson.
"""

import math

import geomstats.backend as gs
from geomstats.algebra_utils import columnwise_scaling
from geomstats.geometry.base import VectorSpaceOpenSet
from geomstats.geometry.complex_matrices import ComplexMatrices
from geomstats.geometry.diffeo import Diffeo
from geomstats.geometry.general_linear import GeneralLinear
from geomstats.geometry.hermitian_matrices import apply_func_to_eigvalsh, expmh, powermh
from geomstats.geometry.matrices import Matrices, MatricesMetric
from geomstats.geometry.positive_lower_triangular_matrices import (
    InvariantPositiveLowerTriangularMatricesMetric,
    PositiveLowerTriangularMatrices,
)
from geomstats.geometry.pullback_metric import PullbackDiffeoMetric
from geomstats.geometry.riemannian_metric import RiemannianMetric
from geomstats.geometry.scalar_product_metric import ScalarProductMetric
from geomstats.geometry.symmetric_matrices import SymmetricMatrices
from geomstats.integrator import integrate
from geomstats.vectorization import repeat_out


[docs] def logmh(mat): """Compute the matrix log for a Hermitian matrix.""" n = mat.shape[-1] dim_3_mat = gs.reshape(mat, [-1, n, n]) logm = apply_func_to_eigvalsh(dim_3_mat, gs.log, check_positive=True) return gs.reshape(logm, mat.shape)
def _aux_differential_power(power, tangent_vec, base_point): """Compute the differential of the matrix power. Auxiliary function to the functions differential_power and inverse_differential_power. Parameters ---------- power : float Power function to differentiate. tangent_vec : array_like, shape=[..., n, n] Tangent vector at base point. base_point : array_like, shape=[..., n, n] Base point. Returns ------- eigvectors : array-like, shape=[..., n, n] transp_eigvectors : array-like, shape=[..., n, n] numerator : array-like, shape=[..., n, n] denominator : array-like, shape=[..., n, n] temp_result : array-like, shape=[..., n, n] """ eigvalues, eigvectors = gs.linalg.eigh(base_point) if power == 0: powered_eigvalues = gs.log(eigvalues) elif power == math.inf: powered_eigvalues = gs.exp(eigvalues) else: powered_eigvalues = eigvalues**power denominator = eigvalues[..., :, None] - eigvalues[..., None, :] numerator = powered_eigvalues[..., :, None] - powered_eigvalues[..., None, :] null_denominator = gs.abs(denominator) < gs.atol if power == 0: numerator = gs.where(null_denominator, gs.ones_like(numerator), numerator) denominator = gs.where(null_denominator, eigvalues[..., :, None], denominator) elif power == math.inf: numerator = gs.where( null_denominator, powered_eigvalues[..., :, None], numerator ) denominator = gs.where(null_denominator, gs.ones_like(numerator), denominator) else: numerator = gs.where( null_denominator, power * powered_eigvalues[..., :, None], numerator ) denominator = gs.where(null_denominator, eigvalues[..., :, None], denominator) if gs.is_complex(base_point): transp_eigvectors = ComplexMatrices.transconjugate(eigvectors) else: transp_eigvectors = Matrices.transpose(eigvectors) temp_result = Matrices.mul(transp_eigvectors, tangent_vec, eigvectors) if gs.is_complex(base_point): numerator = gs.cast(numerator, dtype=temp_result.dtype) denominator = gs.cast(denominator, dtype=temp_result.dtype) return (eigvectors, transp_eigvectors, numerator, denominator, temp_result)
[docs] def generalized_eigenvalues(point_a, point_b): """Compute the generalized eigenvalues of SPD matrix pair. Steps (check section 7.2 of [GKC2023]_): 1. compute eigendecomposition of point_b 2. get matrix turning point_b into identity by congruence 3. apply congruence to point_a and get generalized eigenvalues Parameters ---------- point_a : array_like, shape=[..., n, n] Symmetric positive definite matrix. point_b : array_like, shape=[..., n, n] Symmetric positive definite matrix. Returns ------- generalized_eigenvalues : array-like, shape=[...] References ---------- .. [GKC2023] Benyamin Ghojogh, Fakhri Karray, and Mark Crowley. “Eigenvalue and Generalized Eigenvalue Problems: Tutorial.” arXiv, May 20, 2023. https://doi.org/10.48550/arXiv.1903.11240. """ eigvals_b, eigvecs_b = gs.linalg.eigh(point_b) inv_sqrt_eigvals_b = gs.sqrt(1.0 / eigvals_b) scaled_b_eigvecs = columnwise_scaling(inv_sqrt_eigvals_b, eigvecs_b) point_a_scaled = Matrices.mul( Matrices.transpose(scaled_b_eigvecs), point_a, scaled_b_eigvecs ) return gs.linalg.eigvalsh(point_a_scaled)
[docs] class SymMatrixLog(Diffeo): """Matrix logarithm diffeomorphism. A diffeomorphism from the space of symmetric positive-definite matrices to the space of symmetric matrices. """ @classmethod def __call__(cls, base_point): """Compute the matrix log for a symmetric matrix. Parameters ---------- base_point : array_like, shape=[..., n, n] Symmetric matrix. Returns ------- log : array_like, shape=[..., n, n] Matrix logarithm of base_point. """ return logmh(base_point)
[docs] @classmethod def inverse(cls, image_point): """Compute the matrix exponential for a symmetric matrix. Parameters ---------- image_point : array_like, shape=[..., n, n] Symmetric matrix. Returns ------- exponential : array_like, shape=[..., n, n] Exponential of image_point. """ return expmh(image_point)
[docs] @classmethod def tangent(cls, tangent_vec, base_point=None, image_point=None): """Compute the differential of the matrix logarithm. Compute the differential of the matrix logarithm on SPD matrices at base_point applied to tangent_vec. Parameters ---------- tangent_vec : array_like, shape=[..., n, n] Tangent vector at base point. base_point : array_like, shape=[..., n, n] Base point. image_point : array_like, shape=[..., n, n] Image base point. Returns ------- differential_log : array-like, shape=[..., n, n] Differential of the matrix logarithm. """ if base_point is not None: ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(0, tangent_vec, base_point) power_operator = numerator / denominator else: ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(math.inf, tangent_vec, image_point) power_operator = denominator / numerator result = power_operator * temp_result return Matrices.mul(eigvectors, result, transp_eigvectors)
[docs] @classmethod def inverse_tangent(cls, image_tangent_vec, image_point=None, base_point=None): """Compute the differential of the matrix exponential. Computes the differential of the matrix exponential on SPD matrices at base_point applied to tangent_vec. Parameters ---------- image_tangent_vec : array_like, shape=[..., n, n] Image tangent vector at image point. image_point : array_like, shape=[..., n, n] Image point. base_point : array_like, shape=[..., n, n] Base point. Returns ------- differential_exp : array-like, shape=[..., n, n] Differential of the matrix exponential. """ if image_point is not None: ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(math.inf, image_tangent_vec, image_point) power_operator = numerator / denominator else: ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(0, image_tangent_vec, base_point) power_operator = denominator / numerator result = power_operator * temp_result return Matrices.mul(eigvectors, result, transp_eigvectors)
[docs] class MatrixPower(Diffeo): """Matrix power diffeomorphism. A diffeomorphism from the space of symmetric positive-definite matrices to itself. """ def __init__(self, power): self.power = power def __call__(self, base_point): """Compute the matrix power. Parameters ---------- base_point : array_like, shape=[..., n, n] Symmetric matrix with non-negative eigenvalues. Returns ------- powerm : array_like or list of arrays, shape=[..., n, n] Matrix power of mat. """ return powermh(base_point, self.power)
[docs] def inverse(self, image_point): """Compute the inverse matrix power. Parameters ---------- image_point : array_like, shape=[..., n, n] Symmetric matrix with non-negative eigenvalues. Returns ------- powerm : array_like or list of arrays, shape=[..., n, n] Matrix power of mat. """ return powermh(image_point, 1 / self.power)
[docs] def tangent(self, tangent_vec, base_point=None, image_point=None): r"""Compute the differential of the matrix power function. Compute the differential of the power function on SPD(n), :math:`A^p=\exp(p \log(A))`, at base_point applied to tangent_vec. Parameters ---------- tangent_vec : array_like, shape=[..., n, n] Tangent vector at base point. base_point : array_like, shape=[..., n, n] Base point. image_point : array_like, shape=[..., n, n] Image base point. Returns ------- differential_power : array-like, shape=[..., n, n] Differential of the power function. """ if base_point is None: base_point = self.inverse(image_point) ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(self.power, tangent_vec, base_point) power_operator = numerator / denominator result = power_operator * temp_result return Matrices.mul(eigvectors, result, transp_eigvectors)
[docs] def inverse_tangent(self, image_tangent_vec, image_point=None, base_point=None): r"""Compute the inverse of the differential of the matrix power. Compute the inverse of the differential of the power function on SPD matrices, :math:`A^p=\exp(p \log(A))`, at base_point applied to tangent_vec. Parameters ---------- image_tangent_vec : array_like, shape=[..., n, n] Image tangent vector at image point. image_base_point : array_like, shape=[..., n, n] Image point. base_point : array_like, shape=[..., n, n] Base point. Returns ------- inverse_differential_power : array-like, shape=[..., n, n] Inverse of the differential of the power function. """ if base_point is None: base_point = self.inverse(image_point) ( eigvectors, transp_eigvectors, numerator, denominator, temp_result, ) = _aux_differential_power(self.power, image_tangent_vec, base_point) power_operator = denominator / numerator result = power_operator * temp_result return Matrices.mul(eigvectors, result, transp_eigvectors)
[docs] class CholeskyMap(Diffeo): """Cholesky map. A diffeomorphism from the space of symmetric positive-definite matrices to the space of positive lower triangular matrices. """ @classmethod def __call__(cls, base_point): """Compute cholesky factor. Compute cholesky factor for a symmetric positive definite matrix. Parameters ---------- base_point : array_like, shape=[..., n, n] spd matrix. Returns ------- cf : array_like, shape=[..., n, n] lower triangular matrix with positive diagonal elements. """ return gs.linalg.cholesky(base_point)
[docs] @staticmethod def inverse(image_point): """Compute gram matrix of rows. Gram_matrix is mapping from point to point.point^{T}. This is diffeomorphism between cholesky space and spd manifold. Parameters ---------- image_point : array-like, shape=[..., n, n] element in cholesky space. Returns ------- projected: array-like, shape=[..., n, n] SPD matrix. """ return gs.einsum("...ij,...kj->...ik", image_point, image_point)
[docs] @classmethod def tangent(cls, tangent_vec, base_point=None, image_point=None): """Compute the differential of the cholesky factor map. Parameters ---------- tangent_vec : array_like, shape=[..., n, n] Tangent vector at base point. base_point : array_like, shape=[..., n, n] Base point. image_point : array_like, shape=[..., n, n] Image base point. Returns ------- differential_cf : array-like, shape=[..., n, n] Differential of cholesky factor map lower triangular matrix. """ if image_point is None: image_point = cls.__call__(base_point) inv_base_point = gs.linalg.inv(image_point) inv_transpose_base_point = Matrices.transpose(inv_base_point) aux = Matrices.to_lower_triangular_diagonal_scaled( Matrices.mul(inv_base_point, tangent_vec, inv_transpose_base_point) ) return Matrices.mul(image_point, aux)
[docs] @classmethod def inverse_tangent(cls, image_tangent_vec, image_point=None, base_point=None): """Compute differential of gram. Parameters ---------- image_tangent_vec : array_like, shape=[..., n, n] Tangent vector at base point. image_point : array_like, shape=[..., n, n] Base point. base_point : array_like, shape=[..., n, n] Base point. Returns ------- differential_gram : array-like, shape=[..., n, n] Differential of the gram. """ if image_point is None: image_point = cls.__call__(base_point) mat1 = gs.einsum("...ij,...kj->...ik", image_tangent_vec, image_point) mat2 = gs.einsum("...ij,...kj->...ik", image_point, image_tangent_vec) return mat1 + mat2
[docs] class SPDMatrices(VectorSpaceOpenSet): """Class for the manifold of symmetric positive definite (SPD) matrices. Parameters ---------- n : int Integer representing the shape of the matrices: n x n. equip : bool If True, equip space with default metric. """ def __init__(self, n, equip=True): super().__init__( dim=int(n * (n + 1) / 2), embedding_space=SymmetricMatrices(n), equip=equip, ) self.n = n
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return SPDAffineMetric
[docs] def belongs(self, point, atol=gs.atol): """Check if a matrix is symmetric with positive eigenvalues. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix to be checked. atol : float Tolerance. Optional, default: backend atol. Returns ------- belongs : array-like, shape=[...,] Boolean denoting if mat is an SPD matrix. """ is_sym = self.embedding_space.belongs(point, atol) is_pd = Matrices.is_pd(point) return gs.logical_and(is_sym, is_pd)
[docs] def projection(self, point): """Project a matrix to the space of SPD matrices. First the symmetric part of point is computed, then the eigenvalues are floored to gs.atol. Parameters ---------- point : array-like, shape=[..., n, n] Matrix to project. Returns ------- projected: array-like, shape=[..., n, n] SPD matrix. """ sym = Matrices.to_symmetric(point) eigvals, eigvecs = gs.linalg.eigh(sym) regularized = gs.where(eigvals < gs.atol, gs.atol, eigvals) reconstruction = gs.einsum("...ij,...j->...ij", eigvecs, regularized) return Matrices.mul(reconstruction, Matrices.transpose(eigvecs))
[docs] def random_point(self, n_samples=1, bound=1.0): """Sample in SPD(n) from the log-uniform distribution. Parameters ---------- n_samples : int Number of samples. Optional, default: 1. bound : float Bound of the interval in which to sample in the tangent space. Optional, default: 1. Returns ------- samples : array-like, shape=[..., n, n] Points sampled in SPD(n). """ n = self.n size = (n_samples, n, n) if n_samples != 1 else (n, n) mat = bound * (2 * gs.random.rand(*size) - 1) return GeneralLinear.exp(Matrices.to_symmetric(mat))
[docs] def random_tangent_vec(self, base_point, n_samples=1): """Sample on the tangent space of SPD(n) from the uniform distribution. Parameters ---------- n_samples : int Number of samples. Optional, default: 1. base_point : array-like, shape=[..., n, n] Base point of the tangent space. Returns ------- samples : array-like, shape=[..., n, n] Points sampled in the tangent space at base_point. """ n = self.n size = (n_samples, n, n) if n_samples != 1 else (n, n) sqrt_base_point = gs.linalg.sqrtm(base_point) tangent_vec_at_id_aux = 2 * gs.random.rand(*size) - 1 tangent_vec_at_id = tangent_vec_at_id_aux + Matrices.transpose( tangent_vec_at_id_aux ) return Matrices.mul(sqrt_base_point, tangent_vec_at_id, sqrt_base_point)
[docs] class SPDAffineMetric(RiemannianMetric): """Class for the affine-invariant metric on the SPD manifold. Parameters ---------- power_affine : int Power transformation of the classical SPD metric. Optional, default: 1. References ---------- .. [TP2019] Thanwerdas, Pennec. "Is affine-invariance well defined on SPD matrices? A principled continuum of metrics" Proc. of GSI, 2019. https://arxiv.org/abs/1906.01349 """
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point): """Compute the affine-invariant inner-product. Compute the inner-product of tangent_vec_a and tangent_vec_b at point base_point using the affine invariant Riemannian metric. Parameters ---------- tangent_vec_a : array-like, shape=[..., n, n] Tangent vector at base point. tangent_vec_b : array-like, shape=[..., n, n] Tangent vector at base point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- inner_product : array-like, shape=[..., n, n] Inner-product. """ inv_base_point = GeneralLinear.inverse(base_point) aux_a = Matrices.mul(inv_base_point, tangent_vec_a) aux_b = Matrices.mul(inv_base_point, tangent_vec_b) return Matrices.trace_product(aux_a, aux_b)
[docs] def exp(self, tangent_vec, base_point): """Compute the affine-invariant exponential map. Compute the Riemannian exponential at point base_point of tangent vector tangent_vec wrt the metric defined in inner_product. This gives a symmetric positive definite matrix. Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector at base point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- exp : array-like, shape=[..., n, n] Riemannian exponential. """ sqrt_base_point, inv_sqrt_base_point = powermh(base_point, [1.0 / 2, -1.0 / 2]) tangent_vec_at_id = Matrices.mul( inv_sqrt_base_point, tangent_vec, inv_sqrt_base_point ) tangent_vec_at_id = Matrices.to_symmetric(tangent_vec_at_id) exp_from_id = expmh(tangent_vec_at_id) return Matrices.mul(sqrt_base_point, exp_from_id, sqrt_base_point)
[docs] def log(self, point, base_point): """Compute the affine-invariant logarithm map. Compute the Riemannian logarithm at point base_point, of point wrt the metric defined in inner_product. This gives a tangent vector at point base_point. Parameters ---------- point : array-like, shape=[..., n, n] Point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- log : array-like, shape=[..., n, n] Riemannian logarithm of point at base_point. """ sqrt_base_point, inv_sqrt_base_point = powermh(base_point, [1.0 / 2, -1.0 / 2]) point_near_id = Matrices.mul(inv_sqrt_base_point, point, inv_sqrt_base_point) point_near_id = Matrices.to_symmetric(point_near_id) log_at_id = logmh(point_near_id) return Matrices.mul(sqrt_base_point, log_at_id, sqrt_base_point)
[docs] def squared_dist(self, point_a, point_b): """Compute the Affine Invariant squared distance. Compute the Riemannian squared distance between point_a and point_b. Parameters ---------- point_a : array-like, shape=[..., n, n] Point. point_b : array-like, shape=[..., n, n] Point. Returns ------- squared_dist : array-like, shape=[...] Riemannian squared distance. """ gen_eigvals = generalized_eigenvalues(point_a, point_b) return gs.sum(gs.log(gen_eigvals) ** 2, axis=-1)
[docs] def parallel_transport( self, tangent_vec, base_point, direction=None, end_point=None ): r"""Parallel transport of a tangent vector. Closed-form solution for the parallel transport of a tangent vector along the geodesic between two points `base_point` and `end_point` or alternatively defined by :math:`t \mapsto exp_{(base\_point)}( t*direction)`. Denoting `tangent_vec_a` by `S`, `base_point` by `A`, and `end_point` by `B` or `B = Exp_A(tangent_vec_b)` and :math:`E = (BA^{- 1})^{( 1 / 2)}`. Then the parallel transport to `B` is: .. math:: S' = ESE^T Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector at base point to be transported. base_point : array-like, shape=[..., n, n] Point on the manifold of SPD matrices. Point to transport from direction : array-like, shape=[..., n, n] Tangent vector at base point, initial speed of the geodesic along which the parallel transport is computed. Unused if `end_point` is given. Optional, default: None. end_point : array-like, shape=[..., n, n] Point on the manifold of SPD matrices. Point to transport to. Optional, default: None. Returns ------- transported_tangent_vec: array-like, shape=[..., n, n] Transported tangent vector at exp_(base_point)(tangent_vec_b). """ if end_point is None: end_point = self.exp(direction, base_point) # compute B^1/2(B^-1/2 A B^-1/2)B^-1/2 instead of sqrtm(AB^-1) sqrt_bp, inv_sqrt_bp = powermh(base_point, [1.0 / 2, -1.0 / 2]) pdt = powermh(Matrices.mul(inv_sqrt_bp, end_point, inv_sqrt_bp), 1.0 / 2) congruence_mat = Matrices.mul(sqrt_bp, pdt, inv_sqrt_bp) return Matrices.congruent(tangent_vec, congruence_mat)
[docs] def injectivity_radius(self, base_point=None): """Radius of the largest ball where the exponential is injective. Because of the negative curvature of this space, the injectivity radius is infinite everywhere. Parameters ---------- base_point : array-like, shape=[..., n, n] Point on the manifold. Returns ------- radius : array-like, shape=[...,] Injectivity radius. """ radius = gs.array(math.inf) return repeat_out(self._space.point_ndim, radius, base_point)
[docs] class SPDBuresWassersteinMetric(RiemannianMetric): """Class for the Bures-Wasserstein metric on the SPD manifold. References ---------- .. [BJL2017] Bhatia, Jain, Lim. "On the Bures-Wasserstein distance between positive definite matrices" Elsevier, Expositiones Mathematicae, vol. 37(2), 165-191, 2017. https://arxiv.org/pdf/1712.01504.pdf .. [MMP2018] Malago, Montrucchio, Pistone. "Wasserstein-Riemannian geometry of Gaussian densities" Information Geometry, vol. 1, 137-179, 2018. https://arxiv.org/pdf/1801.09269.pdf """
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point): r"""Compute the Bures-Wasserstein inner-product. Compute the inner-product of tangent_vec_a :math:`A` and tangent_vec_b :math:`B` at point base_point :math:`S=PDP^\top` using the Bures-Wasserstein Riemannian metric: .. math:: \frac{1}{2}\sum_{i,j}\frac{[P^\top AP]_{ij}[P^\top BP]_{ij}}{d_i+d_j} Parameters ---------- tangent_vec_a : array-like, shape=[..., n, n] Tangent vector at base point. tangent_vec_b : array-like, shape=[..., n, n] Tangent vector at base point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- inner_product : array-like, shape=[...,] Inner-product. """ eigvals, eigvecs = gs.linalg.eigh(base_point) transp_eigvecs = Matrices.transpose(eigvecs) rotated_tangent_vec_a = Matrices.mul(transp_eigvecs, tangent_vec_a, eigvecs) rotated_tangent_vec_b = Matrices.mul(transp_eigvecs, tangent_vec_b, eigvecs) coefficients = 1 / (eigvals[..., :, None] + eigvals[..., None, :]) result = ( Matrices.frobenius_product( coefficients * rotated_tangent_vec_a, rotated_tangent_vec_b ) / 2 ) return result
[docs] def exp(self, tangent_vec, base_point): """Compute the Bures-Wasserstein exponential map. Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector at base point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- exp : array-like, shape=[...,] Riemannian exponential. """ eigvals, eigvecs = gs.linalg.eigh(base_point) transp_eigvecs = Matrices.transpose(eigvecs) rotated_tangent_vec = Matrices.mul(transp_eigvecs, tangent_vec, eigvecs) coefficients = 1 / (eigvals[..., :, None] + eigvals[..., None, :]) rotated_sylvester = rotated_tangent_vec * coefficients rotated_hessian = gs.einsum("...ij,...j->...ij", rotated_sylvester, eigvals) rotated_hessian = Matrices.mul(rotated_hessian, rotated_sylvester) hessian = Matrices.mul(eigvecs, rotated_hessian, transp_eigvecs) return base_point + tangent_vec + hessian
[docs] def log(self, point, base_point): """Compute the Bures-Wasserstein logarithm map. Compute the Riemannian logarithm at point base_point, of point wrt the Bures-Wasserstein metric. This gives a tangent vector at point base_point. Parameters ---------- point : array-like, shape=[..., n, n] Point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- log : array-like, shape=[..., n, n] Riemannian logarithm. """ # compute B^1/2(B^-1/2 A B^-1/2)B^-1/2 instead of sqrtm(AB^-1) sqrt_bp, inv_sqrt_bp = powermh(base_point, [0.5, -0.5]) pdt = powermh(Matrices.mul(sqrt_bp, point, sqrt_bp), 0.5) sqrt_product = Matrices.mul(sqrt_bp, pdt, inv_sqrt_bp) transp_sqrt_product = Matrices.transpose(sqrt_product) return sqrt_product + transp_sqrt_product - 2 * base_point
[docs] def squared_dist(self, point_a, point_b): """Compute the Bures-Wasserstein squared distance. Compute the Riemannian squared distance between point_a and point_b. Parameters ---------- point_a : array-like, shape=[..., n, n] Point. point_b : array-like, shape=[..., n, n] Point. Returns ------- squared_dist : array-like, shape=[...] Riemannian squared distance. Notes ----- Use of `abs` in the output prevents nan when calling `sqrt` in very small negative outputs (e.g. -1e-16). """ tr_a = gs.trace(point_a) tr_b = gs.trace(point_b) point_a_sqrt = apply_func_to_eigvalsh(point_a, gs.sqrt) c_sq_eigvals = gs.linalg.eigvalsh( Matrices.mul(Matrices.mul(point_a_sqrt, point_b), point_a_sqrt) ) cross_term = gs.sum(gs.sqrt(c_sq_eigvals), axis=-1) return gs.abs(tr_a + tr_b - 2 * cross_term)
[docs] def parallel_transport( self, tangent_vec, base_point, direction=None, end_point=None, n_steps=10, step="rk4", ): r"""Compute the parallel transport of a tangent vec along a geodesic. Approximation of the solution of the parallel transport of a tangent vector a along the geodesic defined by :math:`t \mapsto exp_{( base\_point)}(t* tangent\_vec\_b)`. The parallel transport equation is formulated in this case in [TP2021]_. Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector at `base_point` to transport. base_point : array-like, shape=[..., n, n] Initial point of the geodesic. direction : array-like, shape=[..., n, n] Tangent vector at `base_point`, initial velocity of the geodesic to transport along. end_point : array-like, shape=[..., n, n] Point to transport to. Optional, default: None. n_steps : int Number of steps to use to approximate the solution of the ordinary differential equation. Optional, default: 100 step : str, {'euler', 'rk2', 'rk4'} Scheme to use in the integration scheme. Optional, default: 'rk4'. Returns ------- transported : array-like, shape=[..., n, n] Transported tangent vector at `exp_(base_point)(tangent_vec_b)`. References ---------- .. [TP2021] Yann Thanwerdas, Xavier Pennec. O(n)-invariant Riemannian metrics on SPD matrices. 2021. ⟨hal-03338601v2⟩ See Also -------- Integration module: geomstats.integrator """ if end_point is None: end_point = self.exp(direction, base_point) horizontal_lift_a = gs.linalg.solve_sylvester( base_point, base_point, tangent_vec ) square_root_bp, inverse_square_root_bp = powermh(base_point, [0.5, -0.5]) end_point_lift = Matrices.mul(square_root_bp, end_point, square_root_bp) square_root_lift = powermh(end_point_lift, 0.5) horizontal_velocity = gs.matmul(inverse_square_root_bp, square_root_lift) partial_horizontal_velocity = Matrices.mul(horizontal_velocity, square_root_bp) partial_horizontal_velocity = partial_horizontal_velocity + Matrices.transpose( partial_horizontal_velocity ) def force(state, time): horizontal_geodesic_t = ( 1 - time ) * square_root_bp + time * horizontal_velocity geodesic_t = ( (1 - time) ** 2 * base_point + time * (1 - time) * partial_horizontal_velocity + time**2 * end_point ) align = Matrices.mul( horizontal_geodesic_t, Matrices.transpose(horizontal_velocity - square_root_bp), state, ) right = align + Matrices.transpose(align) return gs.linalg.solve_sylvester(geodesic_t, geodesic_t, -right) flow = integrate(force, horizontal_lift_a, n_steps=n_steps, step=step) final_align = Matrices.mul(end_point, flow[-1]) return final_align + Matrices.transpose(final_align)
[docs] def injectivity_radius(self, base_point): """Compute the upper bound of the injectivity domain. This is the smallest eigen value of the base point. Parameters ---------- base_point : array-like, shape=[..., n, n] Point on the manifold. Returns ------- radius : float Injectivity radius. """ eigen_values = gs.linalg.eigvalsh(base_point) return eigen_values[..., 0] ** 0.5
[docs] class SPDEuclideanMetric(MatricesMetric): """Class for the Euclidean metric on the SPD manifold."""
[docs] @staticmethod def exp_domain(tangent_vec, base_point): """Compute the domain of the Euclidean exponential map. Compute the real interval of time where the Euclidean geodesic starting at point `base_point` in direction `tangent_vec` is defined. Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector at base point. base_point : array-like, shape=[..., n, n] Base point. Returns ------- exp_domain : array-like, shape=[..., 2] Interval of time where the geodesic is defined. """ invsqrt_base_point = powermh(base_point, -0.5) reduced_vec = gs.matmul(invsqrt_base_point, tangent_vec) reduced_vec = gs.matmul(reduced_vec, invsqrt_base_point) eigvals = gs.linalg.eigvalsh(reduced_vec) min_eig = gs.amin(eigvals, axis=-1) max_eig = gs.amax(eigvals, axis=-1) inf_value = gs.where(max_eig <= 0.0, gs.array(-math.inf), -1.0 / max_eig) sup_value = gs.where(min_eig >= 0.0, gs.array(-math.inf), -1.0 / min_eig) return gs.stack((inf_value, sup_value), axis=-1)
[docs] def injectivity_radius(self, base_point): """Compute the upper bound of the injectivity domain. This is the smallest eigen value of the base point. Parameters ---------- base_point : array-like, shape=[..., n, n] Point on the manifold. Returns ------- radius : float Injectivity radius. """ eigen_values = gs.linalg.eigvalsh(base_point) return eigen_values[..., 0]
[docs] class SPDLogEuclideanMetric(PullbackDiffeoMetric): """Class for the Log-Euclidean metric on the SPD manifold.""" def __init__(self, space, image_space=None): if image_space is None: image_space = SymmetricMatrices(n=space.n) diffeo = SymMatrixLog() super().__init__(space, diffeo, image_space)
[docs] class SPDPowerMetric(PullbackDiffeoMetric): r"""Pullback metric induced by the power diffeomorphism. Given an equipped image space, the pullback metric is given by .. math:: g_{\Sigma}^{(p)}(X, X)= \frac{1}{p^2} g_{\Sigma^p}\left(d_{\Sigma} \operatorname{pow}_p(X), d_{\Sigma} \operatorname{pow}_p(X)\right) The image space must be equipped with a `ScalarProductMetric`. The scale :math:`s` relates with power :math:`p` by .. math:: s = 1 / power^2 Check section 5.3 of [T2022]_ for more details. References ---------- .. [T2022] Thanwerdas, Y. (2022) Riemannian and stratified geometries of covariance and correlation matrices. Theses. Université Côte d’Azur. Available at: https://hal.archives-ouvertes.fr/tel-03698752 (Accessed: 29 September 2022). """ def __init__(self, space, image_space): if not isinstance(image_space.metric, ScalarProductMetric): raise ValueError( "`image-space` must be equipped with a `ScalarProductMetric`" ) power = 1 / gs.sqrt(image_space.metric.scale) diffeo = MatrixPower(power) super().__init__(space, diffeo, image_space)
[docs] class LieCholeskyMetric(PullbackDiffeoMetric): """Pullback metric via a diffeomorphism. Diffeormorphism between SPD matrices and PLT matrices equipped with left invariant metric (see chapter 7 [TP2022]_). References ---------- .. [T2022] Yann Thanwerdas. Riemannian and stratified geometries on covariance and correlation matrices. Differential Geometry [math.DG]. Université Côte d'Azur, 2022. """ def __init__(self, space): image_space = PositiveLowerTriangularMatrices(space.n, equip=False) image_space.equip_with_metric(InvariantPositiveLowerTriangularMatricesMetric) diffeo = CholeskyMap() super().__init__(space=space, diffeo=diffeo, image_space=image_space)