Source code for geomstats.geometry.matrices

"""Module exposing the `Matrices` and `MatricesMetric` class."""

import logging
import math
from functools import reduce

import geomstats.backend as gs
import geomstats.errors
from geomstats.algebra_utils import flip_determinant, from_vector_to_diagonal_matrix
from geomstats.geometry.base import MatrixVectorSpace
from geomstats.geometry.diffeo import VectorSpaceDiffeo
from geomstats.geometry.euclidean import EuclideanMetric
from geomstats.vectorization import repeat_out


[docs] def matrix_matrix_transpose(point): r"""Matrix multiplication with transpose. .. math:: f(A) = A A^{\top} Parameters ---------- point : array-like, shape=[n, n] Matrix. Returns ------- mat : array-like, shape=[n, n] Matrix resulting from operation. """ return Matrices.mul(point, Matrices.transpose(point))
[docs] def tangent_matrix_matrix_transpose(tangent_vec, base_point): r"""Tangent matrix multiplication with transpose. .. math:: d_A f (X) = X A^\top + A X^\top Parameters ---------- tangent_vec : array-like, shape=[..., n, n] Tangent vector. base_point : array-like, shape=[..., n, n] Base point. Returns ------- image_tangent_vec : array-like, shape=[n, n] Matrix resulting from operation. """ return Matrices.mul(tangent_vec, Matrices.transpose(base_point)) + Matrices.mul( base_point, Matrices.transpose(tangent_vec) )
[docs] class FlattenDiffeo(VectorSpaceDiffeo): """A diffeo from matrices to Euclidean by flattening. Parameters ---------- m, n : int Integers representing the shapes of the matrices: m x n. """ def __init__(self, m, n=None): super().__init__(space_ndim=2, image_space_ndim=1) self.m, self.n = m, n or m def __call__(self, base_point=None): """Diffeomorphism at base point. Parameters ---------- base_point : array-like, shape=[..., m, n] Base point. Returns ------- image_point : array-like, shape=[..., m*n] Image point. """ if base_point is None: return None return Matrices.flatten(base_point)
[docs] def inverse(self, image_point=None): r"""Inverse diffeomorphism at image point. :math:`f^{-1}: N \rightarrow M` Parameters ---------- image_point : array-like, shape=[..., m*n] Image point. Returns ------- base_point : array-like, shape=[..., m, n] Base point. """ if image_point is None: return None return gs.reshape(image_point, image_point.shape[:-1] + (self.m, self.n))
[docs] class BasisRepresentationDiffeo(VectorSpaceDiffeo): """A diffeo from matrices to Euclidean through basis representation. Parameters ---------- space : MatrixVectorSpace """ def __init__(self, space): super().__init__(space_ndim=2, image_space_ndim=1) self._space = space def __call__(self, base_point=None): """Diffeomorphism at base point. Parameters ---------- base_point : array-like, shape=[..., m, n] Base point. Returns ------- image_point : array-like, shape=[..., dim] Image point. """ if base_point is None: return None return self._space.basis_representation(base_point)
[docs] def inverse(self, image_point=None): r"""Inverse diffeomorphism at image point. :math:`f^{-1}: N \rightarrow M` Parameters ---------- image_point : array-like, shape=[..., dim] Image point. Returns ------- base_point : array-like, shape=[..., m, n] Base point. """ if image_point is None: return None return self._space.matrix_representation(image_point)
[docs] class Matrices(MatrixVectorSpace): """Class for the space of matrices (m, n). Parameters ---------- m, n : int Integers representing the shapes of the matrices: m x n. """ def __init__(self, m, n, equip=True): geomstats.errors.check_integer(n, "n") geomstats.errors.check_integer(m, "m") super().__init__(shape=(m, n), equip=equip) self.m = m self.n = n def _create_basis(self): """Create the canonical basis.""" m, n = self.m, self.n return gs.reshape(gs.eye(n * m), (n * m, m, n))
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return MatricesMetric
[docs] def basis_representation(self, matrix_representation): """Compute the coefficient in the usual matrix basis. This simply flattens the input. Parameters ---------- matrix_representation : array-like, shape=[..., n, n] Matrix. Returns ------- basis_representation : array-like, shape=[..., dim] Representation in the basis. """ return self.flatten(matrix_representation)
[docs] @staticmethod def equal(mat_a, mat_b, atol=gs.atol): """Test if matrices a and b are close. Parameters ---------- mat_a : array-like, shape=[..., dim1, dim2] Matrix. mat_b : array-like, shape=[..., dim2, dim3] Matrix. atol : float Tolerance. Optional, default: backend atol. Returns ------- eq : array-like, shape=[...,] Boolean evaluating if the matrices are close. """ return gs.all(gs.isclose(mat_a, mat_b, atol=atol), (-2, -1))
[docs] @staticmethod def mul(*args): """Compute the product of matrices a1, ..., an. Parameters ---------- a1 : array-like, shape=[..., dim_1, dim_2] Matrix. a2 : array-like, shape=[..., dim_2, dim_3] Matrix. ... an : array-like, shape=[..., dim_n-1, dim_n] Matrix. Returns ------- mul : array-like, shape=[..., dim_1, dim_n] Result of the product of matrices. """ return reduce(gs.matmul, args)
[docs] @classmethod def bracket(cls, mat_a, mat_b): """Compute the commutator of a and b, i.e. `[a, b] = ab - ba`. Parameters ---------- mat_a : array-like, shape=[..., n, n] Matrix. mat_b : array-like, shape=[..., n, n] Matrix. Returns ------- mat_c : array-like, shape=[..., n, n] Commutator. """ return cls.mul(mat_a, mat_b) - cls.mul(mat_b, mat_a)
[docs] @staticmethod def transpose(mat): """Return the transpose of matrices. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- transpose : array-like, shape=[..., n, n] Transposed matrix. """ ndim = gs.ndim(mat) axes = list(range(0, ndim)) axes[-1] = ndim - 2 axes[-2] = ndim - 1 return gs.transpose(mat, axes)
[docs] @staticmethod def diagonal(mat): """Return the diagonal of a matrix as a vector. Parameters ---------- mat : array-like, shape=[..., m, n] Matrix. Returns ------- diagonal : array-like, shape=[..., min(m, n)] Vector of diagonal coefficients. """ return gs.diagonal(mat, axis1=-2, axis2=-1)
[docs] @staticmethod def is_square(mat): """Check if a matrix is square. Parameters ---------- mat : array-like, shape=[..., m, n] Matrix. Returns ------- is_square : array-like, shape=[...,] Boolean evaluating if the matrix is square. """ shape = mat.shape[:-2] if mat.shape[-1] == mat.shape[-2]: return gs.ones(shape, dtype=bool) return gs.zeros(shape, dtype=bool)
[docs] @classmethod def is_diagonal(cls, mat, atol=gs.atol): """Check if a square matrix is diagonal. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- is_diagonal : array-like, shape=[...,] Boolean evaluating if the matrix is square and diagonal. """ diagonal_mat = from_vector_to_diagonal_matrix(cls.diagonal(mat)) is_diagonal = gs.all(gs.isclose(mat, diagonal_mat, atol=atol), axis=(-2, -1)) return is_diagonal
[docs] @classmethod def is_lower_triangular(cls, mat, atol=gs.atol): """Check if a square matrix is lower triangular. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default : backend atol. Returns ------- is_tril : array-like, shape=[...,] Boolean evaluating if the matrix is lower triangular """ return cls.equal(mat, gs.tril(mat), atol)
[docs] @classmethod def is_upper_triangular(cls, mat, atol=gs.atol): """Check if a square matrix is upper triangular. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default : backend atol. Returns ------- is_triu : array-like, shape=[...,] Boolean evaluating if the matrix is upper triangular. """ return cls.equal(mat, gs.triu(mat), atol)
[docs] @classmethod def is_strictly_lower_triangular(cls, mat, atol=gs.atol): """Check if a square matrix is strictly lower triangular. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default : backend atol. Returns ------- is_strictly_tril : array-like, shape=[...,] Boolean evaluating if the matrix is strictly lower triangular """ return cls.equal(mat, gs.tril(mat, k=-1), atol)
[docs] @classmethod def is_strictly_upper_triangular(cls, mat, atol=gs.atol): """Check if a square matrix is strictly upper triangular. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default : backend atol. Returns ------- is_strictly_triu : array-like, shape=[...,] Boolean evaluating if the matrix is strictly upper triangular """ return cls.equal(mat, gs.triu(mat, k=1))
[docs] @classmethod def is_symmetric(cls, mat, atol=gs.atol): """Check if a square matrix is symmetric. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- is_sym : array-like, shape=[...,] Boolean evaluating if the matrix is symmetric. """ return cls.equal(mat, cls.transpose(mat), atol)
[docs] @classmethod def is_pd(cls, mat): """Check if a matrix is positive definite. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- is_pd : array-like, shape=[...,] Boolean evaluating if the matrix is positive definite. """ if mat.ndim == 2: return gs.array(gs.linalg.is_single_matrix_pd(mat)) shape = mat.shape if mat.ndim > 3: mat = gs.reshape(mat, (-1,) + shape[-2:]) is_pd = gs.array([gs.linalg.is_single_matrix_pd(m) for m in mat]) return gs.reshape(is_pd, shape[:-2])
[docs] @classmethod def is_spd(cls, mat, atol=gs.atol): """Check if a matrix is symmetric positive definite. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- is_spd : array-like, shape=[...,] Boolean evaluating if the matrix is symmetric positive definite. """ return gs.logical_and(cls.is_symmetric(mat, atol), cls.is_pd(mat))
[docs] @classmethod def is_skew_symmetric(cls, mat, atol=gs.atol): """Check if a square matrix is skew symmetric. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. atol : float Absolute tolerance. Optional, default: backend atol. Returns ------- is_skew_sym : array-like, shape=[...,] Boolean evaluating if the matrix is skew-symmetric. """ return cls.equal(mat, -cls.transpose(mat), atol)
[docs] @classmethod def to_diagonal(cls, mat): """Make a matrix diagonal. Make a matrix diagonal by zeroing out non diagonal elements. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- diag : array-like, shape=[..., n, n] """ return cls.to_upper_triangular(cls.to_lower_triangular(mat))
[docs] @classmethod def to_lower_triangular(cls, mat): """Make a matrix lower triangular. Make a matrix lower triangular by zeroing out upper elements. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- tril : array-like, shape=[..., n, n] Lower triangular matrix. """ return gs.tril(mat)
[docs] @classmethod def to_upper_triangular(cls, mat): """Make a matrix upper triangular. Make a matrix upper triangular by zeroing out lower elements. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- triu : array-like, shape=[..., n, n] """ return gs.triu(mat)
[docs] @classmethod def to_strictly_lower_triangular(cls, mat): """Make a matrix strictly lower triangular. Make a matrix stricly lower triangular by zeroing out upper and diagonal elements. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- tril : array-like, shape=[..., n, n] Lower triangular matrix. """ return gs.tril(mat, k=-1)
[docs] @classmethod def to_strictly_upper_triangular(cls, mat): """Make a matrix stritcly upper triangular. Make a matrix strictly upper triangular by zeroing out lower and diagonal elements. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- triu : array-like, shape=[..., n, n] """ return gs.triu(mat, k=1)
[docs] @classmethod def to_symmetric(cls, mat): """Make a matrix symmetric. Make a matrix symmetric by averaging it with its transpose. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- sym : array-like, shape=[..., n, n] Symmetric matrix. """ return 1 / 2 * (mat + cls.transpose(mat))
[docs] @classmethod def to_skew_symmetric(cls, mat): """Make a matrix skew-symmetric. Make matrix skew-symmetric by averaging it with minus its transpose. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- skew_sym : array-like, shape=[..., n, n] Skew-symmetric matrix. """ return 1 / 2 * (mat - cls.transpose(mat))
[docs] @classmethod def to_lower_triangular_diagonal_scaled(cls, mat, K=2.0): """Make a matrix lower triangular. Make matrix lower triangular by zeroing out upper elements and divide diagonal by factor K. Parameters ---------- mat : array-like, shape=[..., n, n] Matrix. Returns ------- tril : array-like, shape=[..., n, n] Lower triangular matrix. """ slt = cls.to_strictly_lower_triangular(mat) diag = cls.to_diagonal(mat) / K return slt + diag
[docs] def random_point(self, n_samples=1, bound=1.0): """Sample from a uniform distribution in a cube. Parameters ---------- n_samples : int Number of samples. Optional, default: 1. bound : float Bound of the interval in which to sample each entry. Optional, default: 1. Returns ------- point : array-like, shape=[..., m, n] Sample. """ m, n = self.m, self.n size = (n_samples, m, n) if n_samples != 1 else (m, n) point = bound * (gs.random.rand(*size) - 0.5) return point
[docs] @classmethod def congruent(cls, mat_1, mat_2): r"""Compute the congruent action of mat_2 on mat_1. This is :math:`mat\_2 \ mat\_1 \ mat\_2^T`. Parameters ---------- mat_1 : array-like, shape=[..., n, n] Matrix. mat_2 : array-like, shape=[..., n, n] Matrix. Returns ------- cong : array-like, shape=[..., n, n] Result of the congruent action. """ return cls.mul(mat_2, mat_1, cls.transpose(mat_2))
[docs] @staticmethod def frobenius_product(mat_1, mat_2): """Compute Frobenius inner-product of two matrices. The `einsum` function is used to avoid computing a matrix product. It is also faster than using a sum an element-wise product. Parameters ---------- mat_1 : array-like, shape=[..., m, n] Matrix. mat_2 : array-like, shape=[..., m, n] Matrix. Returns ------- product : array-like, shape=[...,] Frobenius inner-product of mat_1 and mat_2 """ return gs.einsum("...ij,...ij->...", mat_1, mat_2)
[docs] @staticmethod def trace_product(mat_1, mat_2): """Compute trace of the product of two matrices. The `einsum` function is used to avoid computing a matrix product. It is also faster than using a sum an element-wise product. Parameters ---------- mat_1 : array-like, shape=[..., m, n] Matrix. mat_2 : array-like, shape=[..., m, n] Matrix. Returns ------- product : array-like, shape=[...,] Frobenius inner-product of mat_1 and mat_2 """ return gs.einsum("...ij,...ji->...", mat_1, mat_2)
[docs] @staticmethod def flatten(mat): """Return a flattened form of the matrix. Flatten a matrix (compatible with vectorization on data axis 0). The reverse operation is reshape. These operations are often called matrix vectorization / matricization in mathematics (https://en.wikipedia.org/wiki/Tensor_reshaping). The names flatten / reshape were chosen to avoid confusion with vectorization on data axis 0. Parameters ---------- mat : array-like, shape=[..., m, n] Matrix. Returns ------- vec : array-like, shape=[..., m * n] Flatten copy of mat. """ batch_shape = mat.shape[:-2] mat_shape = mat.shape[-2:] return gs.reshape(mat, batch_shape + (math.prod(mat_shape),))
[docs] def reshape(self, vec): """Return a matricized form of the vector. Matricize a vector (compatible with vectorization on data axis 0). The reverse operation is matrices.flatten. These operations are often called matrix vectorization / matricization in mathematics (https://en.wikipedia.org/wiki/Tensor_reshaping). The names flatten / reshape were chosen to avoid confusion with vectorization on data axis 0. Parameters ---------- vec : array-like, shape=[..., m * n] Vector. Returns ------- mat : array-like, shape=[..., m, n] Matricized copy of vec. """ is_data_vectorized_on_axis_0 = gs.ndim(gs.array(vec)) == 2 if is_data_vectorized_on_axis_0: vector_size = vec.shape[1] shape = (vec.shape[0], self.m, self.n) else: vector_size = vec.shape[0] shape = ( self.m, self.n, ) if vector_size != self.m * self.n: raise ValueError("Incompatible vector and matrix sizes") return gs.reshape(vec, shape)
[docs] @classmethod def align_matrices(cls, point, base_point): """Align matrices. Find the optimal rotation R in SO(m) such that the base point and R.point are well positioned. Parameters ---------- point : array-like, shape=[..., m, n] Point on the manifold. base_point : array-like, shape=[..., m, n] Point on the manifold. Returns ------- aligned : array-like, shape=[..., m, n] R.point. """ mat = gs.matmul(cls.transpose(point), base_point) left, singular_values, right = gs.linalg.svd(mat, full_matrices=False) det = gs.linalg.det(mat) conditioning = ( singular_values[..., -2] + gs.sign(det) * singular_values[..., -1] ) / singular_values[..., 0] if gs.any(conditioning < gs.atol): logging.warning( f"Singularity close, ill-conditioned matrix " f"encountered: " f"{conditioning[conditioning < 1e-10]}" ) if gs.any(gs.isclose(conditioning, 0.0)): logging.warning("Alignment matrix is not unique.") flipped = flip_determinant(cls.transpose(right), det) return Matrices.mul(point, left, cls.transpose(flipped))
[docs] class MatricesMetric(EuclideanMetric): """Euclidean metric on matrices given by Frobenius inner-product."""
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None): """Compute Frobenius inner-product of two tangent vectors. Parameters ---------- tangent_vec_a : array-like, shape=[..., m, n] Tangent vector. tangent_vec_b : array-like, shape=[..., m, n] Tangent vector. base_point : array-like, shape=[..., m, n] Base point. Optional, default: None. Returns ------- inner_prod : array-like, shape=[...,] Frobenius inner-product of tangent_vec_a and tangent_vec_b. """ inner_prod = Matrices.frobenius_product(tangent_vec_a, tangent_vec_b) return repeat_out( self._space.point_ndim, inner_prod, tangent_vec_a, tangent_vec_b, base_point )
[docs] def squared_norm(self, vector, base_point=None): """Compute the square of the norm of a vector. Squared norm of a vector associated to the inner product at the tangent space at a base point. Parameters ---------- vector : array-like, shape=[..., dim] Vector. base_point : array-like, shape=[..., dim] Base point. Optional, default: None. Returns ------- sq_norm : array-like, shape=[...,] Squared norm. """ init_axis = len(vector.shape[:-2]) axis = (init_axis, init_axis + 1) sq_norm = gs.linalg.norm(vector, axis=axis) ** 2 return repeat_out(self._space.point_ndim, sq_norm, vector, base_point)
[docs] def norm(self, vector, base_point=None): """Compute norm of a matrix. Norm of a matrix associated to the Frobenius inner product. Parameters ---------- vector : array-like, shape=[..., dim] Vector. base_point : array-like, shape=[..., dim] Base point. Optional, default: None. Returns ------- norm : array-like, shape=[...,] Norm. """ norm = gs.linalg.norm(vector, axis=(-2, -1)) return repeat_out(self._space.point_ndim, norm, vector, base_point)
[docs] class MatricesDiagMetric(EuclideanMetric): """Flat metric on matrices given by a diagonal metric matrix. Parameters ---------- space : MatrixVectorSpace metric_coeffs: array-like, shape=[m,n] """ def __init__(self, space, metric_coeffs=None): super().__init__(space) self._check_metric_coeffs(space, metric_coeffs) if metric_coeffs is None: n = space.n m = space.m if hasattr(space, "m") else n metric_coeffs = gs.ones((m, n)) self.metric_coeffs = metric_coeffs @staticmethod def _check_metric_coeffs(space, metric_coeffs): """Check shape of metric coefficients.""" if metric_coeffs is None: return n = space.n m = space.m if hasattr(space, "m") else n expected_shape = (m, n) if metric_coeffs.shape != expected_shape: raise ValueError( f"metric_coeffs shape is {metric_coeffs.shape};" f"expected: {expected_shape}" )
[docs] def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None): """Compute Frobenius inner-product of two tangent vectors. Parameters ---------- tangent_vec_a : array-like, shape=[..., m, n] Tangent vector. tangent_vec_b : array-like, shape=[..., m, n] Tangent vector. base_point : array-like, shape=[..., m, n] Base point. Optional, default: None. Returns ------- inner_prod : array-like, shape=[...,] Frobenius inner-product of tangent_vec_a and tangent_vec_b. Notes ----- - Implementation relies on fact that the metric_matrix is diagonal, i.e. we just need to multiply each element of the tangent vector by the corresponding diagonal coefficient. (Avoids unnecessary reshapings.) """ inner_prod = Matrices.frobenius_product( tangent_vec_a, self.metric_coeffs * tangent_vec_b ) return repeat_out(2, inner_prod, tangent_vec_a, tangent_vec_b, base_point)