Source code for geomstats.geometry.hermitian

"""Complex Hermitian space.

Lead author: Yann Cabanes.
"""

import geomstats.backend as gs
from geomstats.geometry.base import ComplexVectorSpace
from geomstats.geometry.complex_riemannian_metric import ComplexRiemannianMetric


[docs] class Hermitian(ComplexVectorSpace): """Class for Hermitian spaces. By definition, a Hermitian space is a complex vector space of a given dimension, equipped with a Hermitian metric. Parameters ---------- dim : int Dimension of the Hermitian space. """ def __init__(self, dim, equip=True): super().__init__(shape=(dim,), equip=equip)
[docs] @staticmethod def default_metric(): """Metric to equip the space with if equip is True.""" return HermitianMetric
@property def identity(self): """Identity of the group. Returns ------- identity : array-like, shape=[n] """ return gs.zeros(self.dim, dtype=gs.get_default_cdtype())
[docs] def exp(self, tangent_vec, base_point=None): """Compute the group exponential, which is simply the addition. Parameters ---------- tangent_vec : array-like, shape=[..., n] Tangent vector at base point. base_point : array-like, shape=[..., n] Point from which the exponential is computed. Returns ------- point : array-like, shape=[..., n] Group exponential. """ return tangent_vec + base_point
[docs] class HermitianMetric(ComplexRiemannianMetric): """Class for Hermitian metrics. As a Riemannian metric, the Hermitian metric is: - flat: the inner-product is independent of the base point. - positive definite: it has signature (dimension, 0, 0), where dimension is the dimension of the Hermitian space. """
[docs] def metric_matrix(self, base_point=None): """Compute the inner-product matrix, independent of the base point. Parameters ---------- base_point : array-like, shape=[..., dim] Base point. Optional, default: None. Returns ------- inner_prod_mat : array-like, shape=[..., dim, dim] Inner-product matrix. """ mat = gs.eye(self._space.dim, dtype=gs.get_default_cdtype()) if base_point is not None and base_point.ndim > 1: return gs.broadcast_to(mat, base_point.shape + (self._space.dim,)) return mat
[docs] @staticmethod def inner_product(tangent_vec_a, tangent_vec_b, base_point=None): """Inner product between two tangent vectors at a base point. Parameters ---------- tangent_vec_a: array-like, shape=[..., dim] Tangent vector at base point. tangent_vec_b: array-like, shape=[..., dim] Tangent vector at base point. base_point: array-like, shape=[..., dim] Base point. Optional, default: None. Returns ------- inner_product : array-like, shape=[...,] Inner-product. """ return gs.dot(gs.conj(tangent_vec_a), tangent_vec_b)
[docs] @staticmethod def norm(vector, base_point=None): """Compute norm of a vector. Norm of a vector associated to the inner product at the tangent space at a base point. Note: This only works for positive-definite Riemannian metrics and inner products. Parameters ---------- vector : array-like, shape=[..., dim] Vector. base_point : array-like, shape=[..., dim] Base point. Optional, default: None. Returns ------- norm : array-like, shape=[...,] Norm. """ return gs.linalg.norm(vector, axis=-1)
[docs] @staticmethod def exp(tangent_vec, base_point): """Compute exp map of a base point in tangent vector direction. The Riemannian exponential is vector addition in the Hermitian space. Parameters ---------- tangent_vec : array-like, shape=[..., dim] Tangent vector at base point. base_point : array-like, shape=[..., dim] Base point. Returns ------- exp : array-like, shape=[..., dim] Riemannian exponential. """ return base_point + tangent_vec
[docs] @staticmethod def log(point, base_point): """Compute log map using a base point and other point. The Riemannian logarithm is the subtraction in the Hermitian space. Parameters ---------- point: array-like, shape=[..., dim] Point. base_point: array-like, shape=[..., dim] Base point. Returns ------- log: array-like, shape=[..., dim] Riemannian logarithm. """ return point - base_point