Source code for geomstats.geometry.complex_riemannian_metric
"""Riemannian and pseudo-Riemannian metrics for complex manifolds.
Lead author: Yann Cabanes.
"""
import geomstats.backend as gs
from geomstats.geometry.riemannian_metric import RiemannianMetric
from geomstats.vectorization import check_is_batch
[docs]
class ComplexRiemannianMetric(RiemannianMetric):
r"""Class for Riemannian and pseudo-Riemannian metrics for Complex manifolds.
The associated Levi-Civita connection on the tangent bundle.
"""
[docs]
def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None):
"""Inner product between two tangent vectors at a base point.
Parameters
----------
tangent_vec_a: array-like, shape=[..., dim]
Tangent vector at base point.
tangent_vec_b: array-like, shape=[..., dim]
Tangent vector at base point.
base_point: array-like, shape=[..., dim]
Base point.
Optional, default: None.
Returns
-------
inner_product : array-like, shape=[...,]
Inner-product.
"""
inner_prod_mat = self.metric_matrix(base_point)
aux = gs.einsum("...j,...jk->...k", gs.conj(tangent_vec_a), inner_prod_mat)
return gs.dot(aux, tangent_vec_b)
[docs]
def squared_norm(self, vector, base_point=None):
"""Compute the square of the norm of a vector.
Squared norm of a vector associated to the inner product
at the tangent space at a base point.
Parameters
----------
vector : array-like, shape=[..., dim]
Vector.
base_point : array-like, shape=[..., dim]
Base point.
Returns
-------
sq_norm : array-like, shape=[...,]
Squared norm.
"""
sq_norm = self.inner_product(vector, vector, base_point)
return gs.real(sq_norm)
[docs]
def random_unit_tangent_vec(self, base_point=None, n_vectors=1):
"""Generate a random unit tangent vector at a given point.
Parameters
----------
base_point : array-like, shape=[..., dim]
Point.
n_vectors : float
Number of vectors to be generated at base_point.
For vectorization purposes n_vectors can be greater than 1 iff
base_point consists of a single point.
Returns
-------
normalized_vector : array-like, shape=[..., n_vectors, dim]
Random unit tangent vector at base_point.
"""
is_batch = check_is_batch(self._space.point_ndim, base_point)
if is_batch and n_vectors > 1:
raise ValueError(
"Several tangent vectors is only applicable to a single base point."
)
dtype = gs.get_default_cdtype() if base_point is None else base_point.dtype
point_shape = self._space.shape
random_vector = gs.squeeze(
gs.cast(gs.random.rand(n_vectors, *point_shape), dtype=dtype)
+ 1j * gs.cast(gs.random.rand(n_vectors, *point_shape), dtype=dtype)
)
normalized_vector = self.normalize(random_vector, base_point)
return gs.squeeze(normalized_vector)